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1. Standard Big-Bang/Crunch (type 0) versus exotic singulari-

ties.

Standard Einstein-Friedmann equations are two equations for three unknown functions of time

a(t), p(t), %(t)

% = 3

(

ȧ2

a2
+

K

a2

)

, (1)

p = −

(

2
ä

a
+

ȧ2

a2
+

K

a2

)

. (2)

plusan equation of state, e.g., of a barotropic type (w = const.≥ −1):

p(t) = w%(t) → a(t) ∝ t23(w + 1) . (3)

Until very recently (including first supernovae results) most of cosmologists studied only simplest - say

“standard” solutions - each of them starts withBig-Bangsingularity in whicha → 0, %, p → ∞

– one of them (ofK = +1) terminates at the second singularity(Big-Crunch)wherea → 0,

%, p → ∞

– the other two (K = 0,−1) continue to anasymptotic emptiness%, p → 0 for a → ∞.

BB and BC exhibitgeodesic incompletnessandcurvature blow-up.
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First supernovae observations ...
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... gave evidence for thestrongenergy condition

% + 3p ≥ 0, % + p ≥ 0 . (4)

violation, but the paradigm of the “standard” Big-Bang/Crunch singularit ies
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2. Big-Rip (type I) as an exotic singularity.

However, WMAP + SDSS + Supernovaecombined bound on the dark energy
barotropic index w (Tegmark et al. (2004)):

showed that there was no sharp cut-off of the data atp = −%!!! so that

the

dark energy with p < −% (phantom) can be admitted!
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More recent data:

Knop et al. 2003 (from SNe + CMB + 2dFGRS combined) –

w = −1.05+0.15
−0.20 (statistical)±0.09 (systematic)

Riess et al. 2004 (w < −1)

Seljak et al. astro-ph/0604335 –w = −1.04 ± 0.06

though more recently Kowalski et al. (arXiv:0804.4142) analyzed 307

supernovae (Sne + BAO + CMB) –w = −1.001+0.059
−0.063 (statistical)+0.063

−0.066

(systematic)

gave some evidence for possible cosmic “no-hair” theorem violation- even a
small fraction of phantom dark energy may dominate the evolution
N(ull) E(nergy) C(ondition)% + p ≥ 0,

W(eak) E(nergy) C(ondition)% + p ≥ 0, ρ ≥ 0,

D(ominant) E(nergy) C(ondition)| p |≤ %, % ≥ 0 are violated!!!
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Big-Rip (type I) as an exotic (neither BB nor BC) singularity.

Since for phantomw < −1, then for convenience we may take

| w + 1 |= −(w + 1) > 0 , (5)

soa(t) = t−2/3|w+1| and the conservation law for phantom gives

% ∝ a3|w+1| . (6)

Conclusion:the biggerthe universe grows,the denserit is, andit becomes
dominated by phantom (which overcomesΛ-term) – an exotic future

singularity appears – Big-Rip%, p → ∞ for a → ∞
Curvature invariantsR2, RµνRµν , RµνρσRµνρσ divergeat Big-Rip

Only for −5/3 < w < −1 the null geodesics are geodesicallycomplete; for

other values ofw, including all timelike geodesics, there is a geodesic

incompleteness(Lazkoz et al. gr-qc/0607073, PRD 2006) - the singularity

is reached in a finite proper time.
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3. Sudden Future Singularity (type II) as an exotic singularity.

Observational support for a Big-Ripgave a push to studies some other exotic types

of singularitiesas possible sources of dark energy.

Barrow (2004) proposeda Sudden Future Singularity (SFS) (or type II - Nojiri,

Odintsov, Tsujikawa 2005) which:

– manifests as a singularity of pressure (orä) only

– leads to the dominant energy condition violation onlyand it emerges due to

a drop of the assumption about the imposition of an equation of state

p 6= p(%), no analytic form of this relation is given (7)

Only the form of the scale factor is given in the field equations:

a(t) = as [δ + (1 − δ) ym − δ (1 − y)n] , y ≡ t

ts
(8)

whereas ≡ a(ts) = const. andδ, m, n = const.
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Apart from a Big-Bang at t = 0 there is a new type of singularity att = ts.

ȧ = as

[

m

ts
(1 − δ) ym−1 + δ

n

ts
(1 − y)

n−1

]

, (9)

ä =
as

t2s

[

m (m − 1) (1 − δ) ym−2 − δn (n − 1) (1 − y)n−2
]

. (10)

Provided

1 < n < 2, (11)

and using Einstein equations we get the following properties:

a = const., ȧ = const. % = const.

ä → −∞ p → ∞ for t → ts (12)

Friedmann limitis easily obtained by taking the “nonstandardicity” parameter

δ → 0.
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Generalized Sudden Future singularities.

Sudden future singularities may be generalized to GSFS if wetake a general scale

factor time derivative of an orderr:

a(r) = as

[

m(m − 1)...(m − r + 1)

trs
(1 − δ) ym−r

+ (−1)r−1δ
n(n − 1)...(n − r + 1)

trs
(1 − y)

n−r

]

, (13)

and choose (Barrow 2004, Lake 2004)r − 1 < n < r. Then for any integerr we

have asingularityin the scale factor derivativea(r), and consequentlyin the

appropriatepressure derivativep(r−2).

None of the energy conditions are violated forr ≥ 3!!!
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4. Finite Scale Factor (type III), Big Separation (type IV) and

w-singularities (type V).

Type III singularities which we will callFinite Scale Factor - FSFsingularities are

characterized by the following conditions:

a = as = const.,%, ȧs → ∞, |p|, äs → ∞
The simplest way to get them is to apply the scale factor as given previously for

SFS, i.e.,

a(t) = as [δ + (1 − δ) ym − δ (1 − y)
n
] , y ≡ t

ts
(14)

whereaf ≡ a(tf ) = const. andδ, A, m, n = const., but with the range of

parametern changed from1 < n < 2 onto

0 < n < 1
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Big Separation - BS (type IV)

Type IV singularity is when:

a = as = const.,% → 0, p → 0,
...
a, Ḧ → ∞ etc.

and so it issimilar to Generalized Sudden Future singularity with onlyone

exception: it also gives the divergence of the barotropic index in the barotropic

equation of state

p(t) = w(t)%(t)

i.e.,

w(t) → ∞
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Barotropic index w−singularity

Another exotic is aw−singularityonly (without the divergence of the

higher-derivatives of the scale factor). (Strangely, it really appears in physical

theories such asf(R) gravity (Starobinsky ’80), scalar field gravity (Setare,

Saridakis ’09, and brane gravity Sahni, Shtanov ’05)). We choose

a(t) = A + B

(

t

ts

)
2

3γ

+ C

(

D − t

ts

)n

, (15)

whereA, B, C, D, γ, n, andts are constants and impose the conditions:

a(0) = 0, a(ts) = const. ≡ as, ȧ(ts) = 0, ä(ts) = 0 , (16)

which finally leads to the following form of the scale factor:
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w−singularity

a(t) =
as

1 − 3γ
2

(

n−1
n− 2

3γ

)n−1

+
1 − 2

3γ

n − 2
3γ

nas

1 − 2
3γ

(

n− 2

3γ

n−1

)n−1

(

t

ts

)
2

3γ

+
as

3γ
2

(

n−1
n− 2

3γ

)n−1

− 1

(

1 −
1 − 2

3γ

n − 2
3γ

t

ts

)n

, (17)

with the admissible values of the parameters:γ > 0 andn 6= 1.
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w−duality

We have a blow-up of the effective barotropic index, i.e.,

w(ts) =
c2

3
[2q(ts) − 1] → ∞ , (18)

accompanied by

p(ts) → 0; %(ts) → 0 . (19)

There is an amazingduality between the Big-Bang and thew-singularityin the

form

pBB ↔ 1

pw
, %BB ↔ 1

%w
, wBB ↔ 1

ww
. (20)

In other words:

pBB → ∞; %BB → ∞; wBB → 0; aBB → 0

pw → 0; %w → 0; ww → ∞; aw → as = const.
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w−duality
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Strength of exotic singularities.

SFSs are determined by ablow-up of the Riemann tensorand its derivatives.

Geodesics do not feel SFSs at all, since geodesic equations are not singular for

as = a(ts) = const. (Fernandez-Jambrina, Lazkoz PRD 74, 064030 (2006)

((gr-qc/0607073))

(

dt

dτ

)2

= A +
P 2 + KL2

a2(t)
, (21)

dr

dτ
=

P1cosφ + P2 sin φ

a2(t)

√

1 − Kr2 , (22)

dφ

dτ
=

L

a2(t)r2
. (23)

Geodesic deviation equation

D2nα

dλ2
+ Rα

βγδu
βnγuδ = 0 , (24)

feels SFS since att = ts we have the Riemann tensorRα
βγδ → ∞.The properties and classification of exotic singularities in cosmology – p. 18/42



No geodesic incompletness.

No geodesic incompletness (a = const. and r.h.s. of geodesic eqs. do not

diverge)⇒ SFS are not the final state of the universe

Point particles do not even see SFSs while extended objects may suffer

instantaneous infinite tidal forces but still are not crushed - strings can pass

through SFSs in the sense that their invariant size remains finite (MPD,

Balcerzak 2006).

Tipler’s (Phys. Lett. A64, 8 (1977)) definition (of a weak singularity):
∫ τ

0
dτ ′
∫ τ ′

0
dτ ′′Rabu

aub

does not diverge on the approach to a singularity atτ = τs

Królak’s (CQG 3, 267 (1988)) definition (of a weak singularity):
∫ τ

0
dτ ′Rabu

aub

does not diverge on the approach to a singularity atτ = τs

Conclusion: an SFSs isdifferentfrom Big-Bang or Big-Rip.
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Classification of exotic singularities.

Type 0 - Big-Banga → 0, p → ∞, % → ∞
Type I - Big-Ripa → ∞, p → ∞, % → ∞
Type II - Sudden Future (includes Big Boost and Big-Brake)a = const.,

% = const.,p → ∞
Type IIg - Generalized Sudden Futurea= const.,% = const.,p =const.,
...
a → ∞ etc.,w < ∞
Type III - Finite Scale Factor (also Big-Freeze)a = as = const.,% → ∞,

p → ∞
Type IV - Big Separation:a= const.,p = % = 0, w → ∞,

...
a → ∞ etc. (and

generalizationsp = % =const. Yurov 2010)

Type V -w-singularitya= const.,p = % = 0, w → ∞ (and generalizations

p =const. Yurov 2010)
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Classification of exotic singularities - strength.

Fernandez-Jambrina (PRD 82, 124004 (2010)) used Puiseux series expansion

a(t) = c0+(ts−t)η0+c1(ts−t)η1+c2(ts−t)η2+. . . η0 < η1 < . . . c0 > 0

(25)

to show the strengths of these singularities as follows (T - Tipler’s definition; K -

Królak’s definition)

Type 0 (BB, BC): T, K - strong

Type I (BR): T, K - strong

Type II (SFS): T, K - weak

Type IIg (GSFS): T, K - weak

Type III (FSF): T - weak, K - strong

Type IV (BS): T, K - weak

Type V (w-sing.): T, K - weak
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5. Exotic singularities against astronomical data.

There is always somefundamental physical theory(scalar field,

higher-oder, string, brane, LQC) which can be related to themodels with

exotic singularities.

In other words, the evidence foran exotic singularitymay be attached to

some form of matter which gives current acceleration of the universe and

makesa candidate for the dark energy.

We can check which of these exotic singularity universes canreally serve

that bychecking them against datawhich favors accelerated universe.

The best studied models are of coursephantom modelswhich still are

within the range of observational limit - cf. Section II.

However, it can be shown thatsome other models(in particular SFS

models) can play a good candidate for modeling the universe.
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Test of SFS (type II) models against supernovae.

We have

m(z) = M − 5 log10 H0 + 25 + 5 log10[r1a(t0)(1 + z)], (26)

wherer1 comes from null geodesic equation

∫ r1

0

dr√
1 − kr2

=

∫ t0

t1

cdt

a(t)
= cts

∫ y1

y0

dy

a(y)
=

c

H0a0

∫ z

0

dz

E(z)
, (27)

and E(z) cannot be given explicitly here as in standard cosmology, and must be

calculated numerically. The redshift is

1 + z =
a(t0)

a(t1)
=

δ + (1 − δ) ym
0 − δ (1 − y0)

n

δ + (1 − δ) ym
1 − δ (1 − y1)

n , (28)
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SFS dark energy versusΛ-term dark energy (concordance cosmology - CC)

Distance modulusµL = m − M for the CC model (H0 = 72kms−1Mpc−1,

Ωm0 = 0.26, ΩΛ0 = 0.74) (dashed curve) and SFS model

(m = 2/3 = 0.6666, n = 1.9999, δ = −0.471, y0 = 0.99936) (solid curve). Open

circles are for the ‘Gold’ data and filled circles are for SNLSdata.
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Exotic-singularity-driven dark energy surprise.

Surprising remark:

If the age of the SFS model is equal to the age of the CC model, i.e. t0 = 13.6

Gyr, one finds thatan SFS is possible in only 8.7 million years!!!.

In this context it is no wonder that the singularities were termed “sudden”.

It was checked that GSFS (generalized SFS - no energy conditions

violation) are always more distant in future. That meansthe strongest of

SFS type singularities is more likely to become reality.

A practical tool to recognize them well in advance is to measure possible

large values of statefinders (deceleration parameter, jerk, snap etc.)!

Interesting point: SFS and other exotic singularitiesplague loop quantum

cosmology!- see Wands et al. PRL ’08 (arXiv: 0808.0190); Singh and Vidotto

1012.1307).
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Big-Brake-exotic-singularity-driven dark energy.

SFS witha = ab = const.,ȧ = 0 (% → 0), andä → −∞ (p → ∞) were also

termed Big-Brake (Gorini, Kamenschchik et al. PRD 69 (2004), 123512). They

fulfill an anti-Chaplygin gas equation of state of the form

p =
A

%
A = const. . (29)

They were studied in the context of the tachyon cosmology by Keresztes Gergely

et al. PRD 79, 083504 (2009), Gergely, Keresztes, Gorini, Kamenschchik,

Polarski 1009.0776.

However, due to the imposition of different values of parameters which are given

by tachyon constraints (plus anti-Chaplygin gas constraints) the closestsingularity

in their model appears

– 1 Gyr in future

– and the furthest even 44 Gyr in future.

Despite, they of course can serve as a source of dark energy.
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Big-Brake is just an SFS.

Big-Brake, is achieved for% → 0 andp → ∞ in the anti-Chaplygin gas model

p(t) =
A

%(t)
(A ≥ 0) . (30)

Consider the first time derivative of the SFS scale factor:

ȧ(t) = as

[

m(1 − δ)

ts
ym−1 + δ

n

ts
(1 − y)

n−1

]

. (31)

Requiring thaṫa → 0, which corresponds to% → 0 aty = 1 we have a condition

that eitherm = 0 or δ → 1. In fact, these conditions are almost equivalent since

lim
m→0

a(y) = as[1 − δ(1 − y)n] , (32)

lim
δ→1

a(y) = as[1 − (1 − y)n] , (33)

though the first one does not restrictδ (and also it has a standard Friedmann limit

δ → 0 - a static one). The properties and classification of exotic singularities in cosmology – p. 27/42



FSF (type III) v. supernovae

 34

 36

 38

 40

 42

 44

 46

 0.01  0.1  1  10

µ

z

δ=0.53938, n=0.87558, χ2/dof=1.01319
t0 in Gyrs=15.29571

Riess gold set SNIa
fit

We have preliminary found that even the type III (Finite Scale Factor) singularity

can be closer than this, i.e.

ts − t0 ≈ 0.3Gyrs (about 30 times larger than the time to an SFS)

with the choice of parameters to be:

ä > 0 for δ > 0:

n = 0.87558; δ = 0.53938;t0 = 15.29571 Gyrs
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CMB shift parameter.

It is possible to fit other tests but at the expense of relaxingthe range of the

parameterm which refers to Big-Bang limit (m = 2/3 is dust).

Shift parameter is:

R =
l′TT
1

lTT
1

(34)

where

lTT
1 – the temperature perturbation CMB spectrum multipole of the first acoustic

peak in SFS model

l′TT
1 – the multipole of a reference flat standard Cold Dark Matter model.

One usually uses a rescaled shift parameter:

R =
H0a0

c

√

Ωm0rdec =
√

Ωm0a
′(y)

∫ y0

ydec

dy

a(y)
=
√

Ωm0

∫ zdec

0

dz

E(z)
, (35)

and WMAP data givesR = 1.70 ± 0.03 (Wang et al. 2006).
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Baryon acoustic oscillations.

The Alcock-Paczýnski effect says that one is able to calculate the distortionof a

spherical object in the sky without knowing its true size.

This can be done by measuring its transverse extend (using the angular diameter

distancedA = l/∆θ, wherel is the linear size of an object) and line-of-sight

extend (using the redshift distance∆x = c∆t/a(t) = cts∆y/a(y)) (see e.g.

Nesseris et al. 2006). As a result one defines the volume distance as

D3
V = d2

A∆x , (36)

so that one has

DV =

[

(
∫ y0

y1

ctsdy

a(y)

)2(
cts∆y

a(y)

)

]
1

3

=

[

(

c

a0H0

∫ z

0

dz

E(z)

)2(
c

a0H0

∆z

E(z)

)

]
1

3

.

Eisenstein et al. (2005) gaveDV (∆z = zBAO = 0.35) = 1370 ± 64 Mpc (an

acoustic peak for 46748 luminous red galaxies (LRG) selected from the SDSS

(Sloan Digital Sky Survey). The properties and classification of exotic singularities in cosmology – p. 30/42



Baryon acoustic oscillations - dimensionless parameter A.

For our sudden future singularity model (14) it is more convenient to use a

dimensionless quantityA which is obtained multiplyingDV by√
Ωm0/(ctszBAO) or by

√
Ωm0(a0H0)/(czBAO) to get

A =
√

Ωm0a
′(y0)

[

a(yBAO)

a′(yBAO)a(y0)

]
1

3

[

1

zBAO

∫ y0

yBAO

dy

a(y)

]
2

3

(38)

or

A =
√

Ωm0E(zBAO)−1/3

[

1

zBAO

∫ z1

0

dz

E(z)

]2/3

(39)

It should have the value (Eisenstein et al. 2005)

A = 0.469
( n

0.98

)−0.35

± 0.017 , (40)

wheren is the spectral index (now taken about∼ 0.96).
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Combined bound: supernovae, CMB shift parameter and BAO.
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Combined bound: conclusions.

There is a region for the 3 tests to overlap but it requires that in the

near-to-Big-Bang phase the dominating fluid has slightly negative pressure

m ≈ 0.72 → w ≈ −0.083 (41)
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6. The universe through an exotic singularity - averaging.

One is able to construct a hybrid model which allows Big-Bang, Sudden Future

Singularity and finally Big-Crunch given by:

aL(t) = as

[

δ +

(

1 +
t

tB

)m

(1 − δ) − δ

(

− t

tB

)n]

(42)

with tB < 0 - the Big-Bang time, andt = 0 and SFS time;

aR(t) = as

[

δ +

(

1 − t

tC

)m

(1 − δ) − δ

(

t

tC

)n]

(43)

with tC > 0 - the Big-Crunch time. In the high pressure regimet → 0 these are

approximated by

aL ≈ as

[

1 +
m

tB
(1 − δ) t

]

, (44)

aR ≈ as

[

1 − m

tC
(1 − δ) t

]

. (45)
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Spacetime averaging of the open universes

A.K. Raychaudhuri (PRL 80, 654 (1998) proposed that one may average physical

and kinematical scalars over the whole open spacetime provided they vanish

rapidly at spatial and temporal infinity as follows

< χ >= lim
xa→∞

∫ ∫ ∫ ∫ xa

−xa χ
√−gd4x

∫ ∫ ∫ ∫ xa

−xa

√−gd4x
(46)

By an open model it is meant that the ratio of the 3-volume hypersurfaces to a

4-volume of spacetime vanishes, i.e.,

∫ ∫ ∫
√

|3 g |d3x
∫ ∫ ∫ ∫ √−gd4x

= 0. (47)

His idea was to tight the vanishing of the average< χ > with the singularity

avoidance in cosmology.
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Spacetime averaging - density and pressure.

For the pressure, the energy density, and the average acceleration we have

< p >= − lim
t0→0

t1→∞

∫ t1
t0

a3
(

2 ä
a + ȧ2

a2

)

dt
∫ t1

t0
a3dt

(48)

and

< % >= lim
t0→0

t1→∞

3
∫ t1

t0
a3
(

ȧ2

a2

)

dt
∫ t1

t0
a3dt

. (49)

< θ̇ >= lim
t0→0

t1→∞

3
∫ t1

t0
a3
(

ä
a − ȧ2

a2

)

dt
∫ t1

t0
a3dt

. (50)
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Spacetime averaging - standard and phantom models

< p >stand = lim
t0→0

t1→∞

− 4

γ

(

1

γ
− 1

)

∫ t1
t0

t2(
1

γ
−1)dt

∫ t1
t0

t
2

γ dt
→ 0,

< % >stand = lim
t0→0

t1→∞

− 4

3γ2

∫ t1
t0

t2(
1

γ
−1)dt

∫ t1
t0

t
2

γ dt
→ 0

< p >ph = lim
t0→0

t1→∞

− 4

| γ |

(

1

| γ | + 1

)

∫ t1
t0

t−2( 1

|γ|+1)dt
∫ t1

t0
t−

2

|γ| dt
→ ∞,

< % >ph = lim
t0→0

t1→∞

− 4

3γ2

∫ t1
t0

t−2( 1

|γ|+1)dt
∫ t1

t0
t−

2

|γ| dt
→ ∞
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Spacetime averaging - SFS and FSF models

ȧL(t) = as

[

m

tB

(

1 +
t

tB

)m−1

(1 − δ) + δ
n

tnB
(−t)

n−1

]

(51)

ȧR(t) = as

[

−m

tC

(

1 − t

tC

)m−1

(1 − δ) + δ
n

tnC
(t)

n−1

]

(52)

äL

as
=

m(m − 1)(1 − δ)

t2B

(

1 +
t

tB

)m−2

− δn(n − 1)

tnB
(−t)

n−2 (53)

äR

as
=

m(1 − m)(1 − δ)

t2C

(

1 − t

tC

)m−2

+
δn(n − 1)

tnC
tn−2 (54)

Only the last terms blow up to give infinite pressure for1 < n < 2 at t = 0 so that

we neglect other terms ina, ȧ andä.
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Spacetime averaging - SFS and FSF models

< θ̇ >SFS,L= lim
t0→−tB

t1→0

−3n

∫ t1
t0

(−t)3n−2dt
∫ t1

t0
(−t)3ndt

(55)

= lim
t0→−tB

t1→0

−3n
3n + 1

3n − 1

(−t1)
3n−1 − (−t0)

3n−1

(−t1)3n+1 − (−t0)3n+1
→ 1

t2B

< θ̇ >SFS,R= lim
t0→0

t1→tC

3n

∫ t1
t0

t3n−2dt
∫ t1

t0
t3ndt

(56)

= lim
t0→0

t1→tC

3n
3n + 1

3n − 1

t3n−1
1 − t3n−1

0

t3n+1
1 − t3n+1

0

→ 1

t2C

These averages are finite for SFS, but they may blow up for FSF if 0 < n < 1/3!
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Subtleties

BB, BC singularities - all the energy conditions fulfilled, averages vanish

BR singularity - no EC fulfilled, averages blow up

SFS - only dominant energy violated, averages finite

It seems that BR is stronger singularity that BB, BC on the ground of

averaging.

SFS is weaker, but FSF does not seem so.

The properties and classification of exotic singularities in cosmology – p. 40/42



7. Summary

Exotic singularitiescan be relatedto new physical sources of gravity

serving as dark energy.

First example source - phantom - produces an exotic singularity – a Big-Rip

in which (a → ∞ and% → ∞) which is different from a Big-Bang/Crunch.

Investigations of phantom inspired othersearches for non-standard

singularities(sudden future, generalized sudden future (=Big-Brake), type

III (Finite Scale Factor), type IV (Big-Separation),w−singularities etc.)

which, in fact, are not necessarily the “true” singularities (according to

Hawking and Penrose definition), as sources of dark energy.

Exotic singularities are, in fact,motivated by fundamental theoriesof

particle physics (scalar-tensor, superstring, brane, loop quantum cosmology

etc.).
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summary contd.

Big-Rip which serves as dark energy despite it may happen in 20 Gyr, while

weak singularities (of tidal forces and their derivatives)may serve as dark

energy if they are quite close in the near future. For examplean SFS may

even appear in 8.7 Myrwith no contradiction with data. A GSFS always

appearslater. Type III (FSF) is possible in about0.3 Gyr. Finally, a

Big-Brake (which is also an SFS) in tachyon cosmology context is at least1

Gyr away from now.

An SFS universes can be fitted to SnIa, CMB and BAO data but at the

expense of admitting an approach to a Big-Bang by a fluid whichis not

exactly dust (m=0.66) but has a slightly negative pressure (m = 0.73 and so

w = -0.09).

Weak exotic singularities (e.g. SFS) allow extended objects to go through

them - this allows construction of a hybrid models of the universe in which

weak singularities are only an episode between the strong singularities such

as Big-Bang or Big-Rip.
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