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Problem:

over the last decade a lot of exotic (non-big-bang) types of
singularities have been uncovered - how can they be influenced

by the variability of the fundamental constants?
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1. Introduction.

Standard Einstein-Friedmann equations are two equations for three unknown functions of time

a(t), p(t), ̺(t)

̺ =
3

8πG

(

ȧ2

a2
+

K

a2

)

, (1)

p = −
1

8πG

(

2
ä

a
+

ȧ2

a2
+

K

a2

)

. (2)

plusan equation of state, e.g., of a barotropic type (w = const.≥ −1):

p(t) = w̺(t) → a(t) ∝ t
2

3(w+1) . (3)

Until very recently (including first supernovae results) most of cosmologists studied only simplest - say

“standard” solutions - each of them starts withBig-Bangsingularity in whicha → 0, ̺, p → ∞

– one of them (ofK = +1) terminates at the second singularity(Big-Crunch)wherea → 0,

̺, p → ∞

– the other two (K = 0,−1) continue to anasymptotic emptiness̺, p → 0 for a → ∞.

BB and BC exhibitgeodesic incompletnessandcurvature blow-up.
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However, first supernovae observations ...
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... gave evidence for thestrongenergy condition

̺+ 3p ≥ 0, ̺+ p ≥ 0 . (4)

violation, but the paradigm of the “standard” Big-Bang/Crunch singularit ies
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2. Standard and exotic singularities in cosmology.

WMAP + SDSS + Supernovaecombined bound on the dark energy barotropic
indexw (Tegmark et al. (2004)); recent: e.g. Amanullah et al. (2010):

showed that there was no sharp cut-off of the data atp = −̺!!! so that

the dark energy with p < −̺ (phantom) could be admitted!

cosmic “no-hair” theorem violation - even a small fraction of phantom
dark energy may dominate the evolution - Big-Rip singularity

NEC, WEC, DEC violated!
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Big-Rip (type I) as an exotic (neither BB nor BC) singularity.

Since for phantomw < −1, then for convenience we may take

| w + 1 |= −(w + 1) > 0 , (5)

soa(t) = t−2/3|w+1| and the conservation law for phantom gives

̺ ∝ a3|w+1| . (6)

Conclusion:the biggerthe universe grows,the denserit is, andit becomes
dominated by phantom (which overcomesΛ-term) – an exotic future

singularity appears – Big-Rip̺, p→ ∞ for a→ ∞
Curvature invariantsR2,RµνRµν ,RµνρσRµνρσ divergeat Big-Rip

In a Big-Rip scenario everything ispulled aparton the approach to a

Big-Rip in a reverse order (Caldwell et al. PRL ’03). Specifically, for

w = −3/2 Big-Rip will happen in 20 Gyr.
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Sudden Future Singularity (type II) as an exotic singularity.

Observational support for a Big-Rip gave a push to studies some other exotic
types of singularitiesas possible sources of dark energy
Barrow (2004)dropped an assumption about the imposition of the equation of

state (3)

p 6= p(̺), (7)

and investigated how the energy density and pressure evolves if one assumes the

analytic form of the scale factor only:

a(t) = as [δ + (1− δ) ym − δ (1− y)n] , y ≡ t

ts
(8)

whereas ≡ a(ts) = const. andδ,m, n = const.

ȧ = as

[

m

ts
(1− δ) ym−1 + δ

n

ts
(1− y)n−1

]

, (9)

ä =
as
t2s

[

m (m− 1) (1− δ) ym−2 − δn (n− 1) (1− y)n−2
]

. (10)
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Sudden Future Singularity ...

Provided

1 < n < 2, (11)

one gets apart from a Big-Bang att = 0 there is a new type of singularity att = ts

- a Sudden Future Singularity (SFS)(or type II - Nojiri, Odintsov, Tsujikawa

2005) which:

– manifests as a singularity of pressurep (or ä) only

– leads to the dominant energy condition violation only In fact we have:

a = const., ȧ = const. ̺ = const.

ä→ −∞ p→ ∞ for t→ ts (12)

Interesting point:

Schwarzschildhorizon atr = rg - metric singular, curvature invariants regular,

Sudden Future Singularity at t = ts - metric regular, curvature invariants
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Generalized Sudden Future singularities (type IIg).

Sudden future singularities may be generalized to GSFS if wetake a general scale

factor time derivative of an orderr:

a(r) = as

[

m(m− 1)...(m− r + 1)

trs
(1− δ) ym−r

+ (−1)r−1δ
n(n− 1)...(n− r + 1)

trs
(1− y)

n−r

]

, (13)

and choose (Barrow 2004, Lake 2004)r − 1 < n < r. Then for any integerr we

have asingularityin the scale factor derivativea(r), and consequentlyin the

appropriatepressure derivativep(r−2).

None of the energy conditions (EC) are violated forr ≥ 3!!!
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Finite Scale Factor (type III) and Big Separation (type IV).

The new exotic singularities were found by Type III singularities which we will

call Finite Scale Factor - FSFsingularities are characterized by the following

conditions (Nojiri, Odintsov, Tsujikawa 2005):

a = as = const.,̺ , ȧs → ∞, |p|, äs → ∞
The simplest way to get them is to apply the scale factor as given previously for

SFS, i.e.,

a(t) = as [δ + (1− δ) ym − δ (1− y)n] , y ≡ t

ts
(14)

whereaf ≡ a(tf ) = const. andδ, A,m, n = const., but with the range of

parametern changed from1 < n < 2 onto

0 < n < 1
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Big Separation - BS (type IV)

Type IV singularity is when (Nojiri, Odintsov, Tsujikwawa):

a = as = const.,̺ → 0, p→ 0,
...
a, Ḧ → ∞ etc.

and so it issimilar to Generalized Sudden Future singularity with onlyone

exception: it also gives the divergence of the barotropic index in the barotropic

equation of state

p(t) = w(t)̺(t)

i.e.,

w(t) → ∞
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Barotropic index w−singularity (Type V)

Assuming the following type of scale factor (MPD, Denkiewicz 2009):

a(t) =
as

1− 3γ
2

(

n−1
n− 2

3γ

)n−1

+
1− 2

3γ

n− 2
3γ

nas

1− 2
3γ

(

n− 2
3γ

n−1

)n−1

(

t

ts

)
2
3γ

+
as

3γ
2

(

n−1
n− 2

3γ

)n−1

− 1

(

1−
1− 2

3γ

n− 2
3γ

t

ts

)n

, (15)

with the admissible values of the parameters:γ = w + 1 > 0 andn 6= 1.

Standard and exotic singularities regularized by varying constants – p. 12/36



w−singularity

one gets a blow-up of the effective barotropic index, i.e.,

w(ts) =
1

3
[2q(ts)− 1] → ∞ , (16)

accompanied by

p(ts) → 0; ̺(ts) → 0 . (17)

There is an amazingduality between the Big-Bang and thew-singularityin the

form

pBB ↔ 1

pw
, ̺BB ↔ 1

̺w
, wBB ↔ 1

ww
. (18)

In other words:

pBB → ∞; ̺BB → ∞; wBB → 0; aBB → 0

pw → 0; ̺w → 0; ww → ∞; aw → as = const.
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Classification of exotic sing. (Nojiri et al. 2005, MPD & Denkiewicz 2010).

Type 0 - Big-Bang (Big-Crunch)a→ 0, p→ ∞, ̺→ ∞
Type I - Big-Ripa(ts) → ∞ (ts <∞), p→ ∞, ̺→ ∞ (Caldwell 2002)

Type II - Sudden Future (includes Big Boost and Big-Brake)a(ts) = const.,

̺ = const.,p→ ∞ (Barrow 2004)

Type IIg - Generalized Sudden Futurea(ts)= const.,̺ = const.,p =const.,
...
a → ∞ etc.,w <∞ (Barrow 2004)

Type III - Finite Scale Factor (also Big-Freeze)a(ts) = const.,̺ → ∞,

p→ ∞ (NOT 2005, Denkiewicz 2011)

Type IV - Big Separation:a(ts)= const.,p = ̺ = 0, w → ∞,
...
a → ∞ etc.

(NOT 2005) (and generalizationsp = ̺ =const. Yurov 2010)

Type V -w-singularitya(ts)= const.,p = ̺ = 0, w → ∞ (MPD,

Denkiewicz 2009) (and generalizationsp =const. Yurov 2010)

Little-Rip a(ts) → ∞, ̺(ts) → ∞ (ts → ∞),

Pseudo-Rip̺ (ts) <∞ (ts → ∞) (Frampton et al. 2011, 2012)
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Are these really singularities - strength?

As an example let us take an SFS which is determined by ablow-up of the

Riemann tensorand its derivatives.

Geodesics do not feel SFSs at all, since geodesic equations are not singular for

as = a(ts) = const. (Fernandez-Jambrina, Lazkoz PRD 74, 064030 (2006))

(

dt

dτ

)2

= A+
P 2 +KL2

a2(t)
, (19)

dr

dτ
=

P1cosφ+ P2 sinφ

a2(t)

√

1−Kr2 , (20)

dφ

dτ
=

L

a2(t)r2
. (21)

Geodesic deviation equation

D2nα

dλ2
+Rαβγδu

βnγuδ = 0 , (22)

feels SFS since att = ts we have the Riemann tensorRαβγδ → ∞.Standard and exotic singularities regularized by varying constants – p. 15/36



Classification of exotic singularities - strength.

Tipler’s (Phys. Lett. A64, 8 (1977)) definition (of a weak singularity):
∫ τ

0
dτ ′
∫ τ ′

0
dτ ′′Rabu

aub

does not diverge on the approach to a singularity atτ = τs

Królak’s (CQG 3, 267 (1988)) definition (of a weak singularity):
∫ τ

0
dτ ′Rabu

aub

does not diverge on the approach to a singularity atτ = τs

Type 0 (BB, BC): T, K - strong

Type I (BR): T, K - strong

Type II (SFS): T, K - weak

Type IIg (GSFS): T, K - weak

Type III (FSF): T - weak, K - strong

Type IV (BS): T, K - weak

Type V (w-sing.): T, K - weak (Fernandez-Jambrina (PRD, 2010)

Standard and exotic singularities regularized by varying constants – p. 16/36



Exotic singularities can mimic dark energy.

SFS - supernovae only (MPD et al. 2007): distance modulusµL = m−M for the

CC model (H0 = 72kms−1Mpc−1, Ωm0 = 0.26, ΩΛ0 = 0.74) (dashed curve) and

SFS model (m = 2/3 = 0.6666, n = 1.9999, δ = −0.471, y0 = 0.99936) (solid

curve). Open circles are for the ‘Gold’ data and filled circles are for SNLS data.
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SFS: Supernovae, CMB shift parameter, and BAO (Denkiewicz et al. 2012)-

fits if m ≈ 0.72, w = −0.82. Also FSF can do (Denkiewicz 2012).
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3. Varying constants theories.

It has been shown thatquantum effects(e.g. Houndjo et al.

arXiv:1203.6084) maychange the strengthof exotic singularities (e.g SFS

to FSF).

On the other hand, varying constants cosmologies have been applied to

solve standard cosmology problemssuch as the horizon and flatness

problem (e.g. Albrecht, Magueijo 1999).

Our idea is to apply them to solve thesingularity problemin cosmology.

We can also ask if varying constants theoriescan soften/strengthenthe

standard and exotic singularities?
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varying constants theories

First fully quantitative framework: Brans-Dicke scalar-tensor gravity (1961)

The gravitational constantG is associated with an average gravitational potential

(scalar field)φ surrounding a given particle:

< φ >= GM/(c/H0) ∝ 1/G = 1.35× 1028g/cm. The scalar field gives the

strength of gravity

G =
1

16πΦ
(23)

With the action

S =

∫

d4x
√−g

(

ΦR − ω

Φ
∂µΦ∂

µΦ+ Λ+ Lm

)

(24)

it relates to low-energy-effective superstring theory forω = −1

String coupling constant (running)gs = exp (φ/2) changes in time withφ - the

dilaton andΦ = exp (−φ).
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varying constants theories

Varying speed of light theories (VSL): Albrecht & Magueijo model (AM model)

(1999)(Barrow 1999; Magueijo 2003):

c4 = ψ(xµ) (25)

and so the action is

S =

∫

d4x
√−g

[

ψ(R + 2Λ)

16πG
+ Lm + Lψ

]

(26)

AM modelbreaks Lorentz invariance(relativity principle and light principle) -

preferred frame (cosmological or CMB) in which the field is minimally coupled to

gravity.

Solves basic problems of standard cosmology: horizon problem and flatness

problem.

Ansatz: Friedmann withρ = ρ0a
−3γ , c(t) = c0a

n - solution if

n ≤ (1/2)(2− 3γ).
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varying constants theories

Magueijo covariant (conformally) and locally invariant model (2000, 2001):

ψ = ln

(

c

c0

)

or c = c0e
ψ , (27)

with the action

S =

∫

d4x
√−g

[

c40e
αψ(R + 2Λ + Lψ)

16πG
+ eβψLm

]

, (28)

with

Lψ = κ(ψ)∇µψ∇µψ . (29)

Further assumption:α− β = 4.

Interesting subcases:

α = 4; β = 0 - Brans-Dicke withφBD = e4ψ/G andκ(ψ) = 16ωBD(φBD).

α = 0; β = −4 - minimal VSL theory.

Standard and exotic singularities regularized by varying constants – p. 22/36



varying constants theories

Varying fine structure constantα (or chargee = e0ǫ(x
µ) theories (Webb et al.

1999, Sandvik 2002)

S =

∫

d4x
√−g

(

ψR− ω

2
∂µψ∂

µψ − 1

4
fµνf

µνe−2ψ + Lm

)

(30)

with ψ = ln ǫ andfµν = ǫFµν .

Assume linear expansioneψ = 1− 8πGζ(ψ − ψ0) = 1−∆α/α with the

constraint on the local equivalence principle violence| ζ |≤ 10−3. The relation to

DE is:

γ =
(8πG dψ

d ln a )
2

Ωψ
(31)

This can be tested while mimicking the dark energy by spectrograph CODEX

(COsmic Dynamics EXplorer) a device attached to planned E-ELT (European

Extremely Large Telescope) measuring the so-called redshift drift (or

Sandage-Loeb effect) for2 < z < 5 (Vielzeuf and Martins 2012).
Standard and exotic singularities regularized by varying constants – p. 23/36



4. Varying constants versus cosmic singularities.

We consider the Friedmann universes invarying speed of light (VSL)theories and

varying gravitational constant Gtheories as follows (̺- mass density;ε = ̺c2(t) -

energy density inJm−3 = Nm−2 = kgm−1s−2)

̺(t) =
3

8πG(t)

(

ȧ2

a2
+
kc2(t)

a2

)

, (32)

p(t) = − c2(t)

8πG(t)

(

2
ä

a
+
ȧ2

a2
+
kc2(t)

a2

)

, (33)

and the energy-momentum “conservation law” is

˙̺(t) + 3
ȧ

a

(

̺(t) +
p(t)

c2(t)

)

= −̺(t) Ġ(t)
G(t)

+ 3
kc(t)ċ(t)

4πGa2
. (34)
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General form of the scale factor.

We suggest a general form of the scale factor (MPD, K. Marosek, JCAP 02

(2013), 012), whichadmits big-bang, big-rip, sudden future, finite scale factor and

w-singularitiesand reads as

a(t) = as

(

t

ts

)m

exp

(

1− t

ts

)n

, (35)

with the constantsts, as,m, n. Fork = 0 we have

̺(t) =
3

8πG(t)

[

m

t
− n

ts

(

1− t

ts

)n−1
]2

, (36)

p(t) = − c2(t)

8πG(t)

[

m(3m− 2)

t2
− 6

mn

tts

(

1− t

ts

)n−1

(37)

+ 3
n2

t2s

(

1− t

ts

)2(n−1)

+ 2
n(n− 1)

t2s

(

1− t

ts

)n−2
]

.
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The scale factor.

Form < 0 we havea big-rip singularity- a→ ∞, ̺→ ∞, p→ ∞ at t = 0;

For1 < n < 2 we havea sudden future singularity(SFS) which appears att = ts

(a = as, ̺ = const.,p→ ∞);

For0 < n < 1 we havea stronger finite scale factor singularity(FSF) att = ts

(a = as, ̺→ ∞, p→ ∞).

In fact, for1 < n < 2 only the last term in the pressure of the type(1− t/ts)
n−2

blows-up, while for0 < n < 1 two more terms(1− t/ts)
n−1 and

(1− t/ts)
2(n−1) do.
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Regularizing singularities by varying constants

One bears in mind the scale factor (35), the energy density (36) and pressure (37)

Regularizing a Big-Bang singularity by varyingG:

If

G(t) ∝ 1

t2
(38)

which is a faster decrease than in Dirac’s LNHG ∝ 1/t, but influences less the

temperature of the Earth constraint (Teller 1948).

Both divergence in̺ andp are removed, though at the expense of having the

"singularity" of strong gravitational couplingG→ ∞ at t→ 0.

In the Dirac’s case, only the̺singularity can be removed.
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regularizing singularities by varying constants: SFS

Regularizing an SFS singularity by varyingc:

If

c(t) = c0

(

1− t

ts

)

p

2

, (39)

then

p(t) = − c20
8πG

[

m(3m− 2)

t2

(

1− t

ts

)p

− 6
mn

tts

(

1− t

ts

)p+n−1

+ 3
n2

t2s

(

1− t

ts

)p+2n−2

+ 2
n(n− 1)

t2s

(

1− t

ts

)p+n−2
]

.

and the singularity of pressure is regularized providedp > 2− n, (1 < n < 2).
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regularizing singularities by varying constants: SFS.

Physical consequence:light eventually stopsat the singularity. Same happens in

loop quantum cosmology (LQC) where it is called the anti-newtonian limit

c = c0
√

1− ̺/̺c → 0 for ̺→ ̺c with ̺c being the critical density (Cailettau et

al. 2012). The low-energy limit̺ ≪ ̺0 gives the standard limitc→ c0.

It also appears naturally in Magueijo model ((Magueijo, PRD63, 043502 (2001)))

in which black holes are not reachable since the light stops at the horizon (despite

they possess Schwarzschild singularity).

Besides, both optionsc = 0 andc = ∞ are possible in this model.
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regularizing singularities by varying constants:w-sing.

In the limitm→ 0 we have an exotic singularity scale factor given by

a(t) = as exp (1− t/ts) and so from (36) and (37) we have

̺ex(t) =
3

8πG(t)

n2

t2s

(

1− t

ts

)2(n−1)

, (40)

pex(t) = − c2(t)

8πG(t)

[

3
n2

t2s

(

1− t

ts

)2(n−1)

+ 2
n(n− 1)

t2s

(

1− t

ts

)n−2
]

(41)

so that

wex(t) =
pex(t)

εex(t)
= −



1 +
2

3

n− 1

n

1
(

1− t
ts

)n



 = −
[

1

3
− 2

3
qex(t)

]

, (42)

which isaw-singularityfor n > 2 (p = ̺ = 0, wex → ∞). Its regularization by

varyingc(t) is impossible since there is noc-dependence here.
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regularizing singularities by varying constants: SFS

Regularizing an SFS singularity by varyingG:

If we assume that

G(t) = G0

(

1− t

ts

)−r

, (43)

(r = const.,G0 = const.) which changes (36) and (37) to

̺(t) =
3

8πG0

[

m2

t2

(

1− t

ts

)r

− 2mn

tts

(

1− t

ts

)r+n−1

+
n2

t2s

(

1− t

ts

)r+2n−2
]

, (44)

p(t) = − c2

8πG0

[

m(3m− 2)

t2

(

1− t

ts

)r

− 6
mn

tts

(

1− t

ts

)r+n−1

+ 3
n2

t2s

(

1− t

ts

)r+2n−2

+ 2
n(n− 1)

t2s

(

1− t

ts

)r+n−2
]

. (45)

Standard and exotic singularities regularized by varying constants – p. 31/36



regularizing singularities by varying constants: SFS

From (44) and (45) it follows that an SFS singularity(1 < n < 2) is regularized

by varying gravitational constant when

r > 2− n , (46)

and an FSF singularity(0 < 1 < n) is regularized when

r > 1− n . (47)

On the other hand, assuming that we have an SFS singularity and that

−1 < r < 0 , (48)

we get that varyingG may change an SFS singularity onto a stronger FSF

singularitywhen

0 < r + n < 1 . (49)

Standard and exotic singularities regularized by varying constants – p. 32/36



Regularizing singularities: (anti-)Chaplygin gas

The equation of state of the (anti-)Chaplygin gas reads as

p(t) = ± A

ε(t)
= ± A

̺(t)c2(t)
(A > 0) , (50)

where the “-” sign is for Chaplygin gas while the “+” sign is for anti-Chaplygin

gas case and the unit ofA is the energy density(=pressure) squareJ2m−6.

Inserting (50) into (34) gives

˙̺(t) + 3
ȧ

a

(

̺2c4(t)∓A

̺(t)c4(t)

)

= −̺(t) Ġ(t)
G(t)

+ 3
kc(t)ċ(t)

4πG(t)a2
. (51)

We assume both varyingG = G(t) andc = c(t) though with zero curvature

(k = 0) as follows

̺(t)c2(t) = B = const. , (52)
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regularizing singularities: (anti-)Chaplygin gas

The solution of (51) reads as

̺(t)a3γ(t)G(t) = E = const. , (53)

where we have defined

γ ≡ B2 ∓A

B2
(54)

Putting the standard big-bang scale factora(t) = (t/ts)
2/3γ , we finally have

̺(t) =
Et2s
t2G(t)

, p(t) = ∓A
B

= const. , (55)

which give̺→ ∞ andp(0) = 0 providedG(0) = const. 6= 0. The singularity at

t = 0 in ̺ andp can be regularizedby takingG(t) ∝ 1/t2 at the expense of

having a constant pressure (cosmological term) instead of zero pressure.
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Subtleties:

In order to regularize an SFS or an FSF singularity by varyingc(t), thelight

should slow and eventually stoppropagating at a singularity. Similar effects

were found in loop quantum cosmology (LQC) as well as in VSL for

Schwarzschild horizon (Magueijo 2001) - speed of light is either zero or

infinity at r = rs. An observer cannot reach this surface even in his finite

proper time.

To regularize an SFS, FSF by varying gravitational constantG(t) - the

strength of gravity has to become infiniteat a singularity. On the one hand,

it is quite reasonable because of the requirement toovercome an infinite

(anti-)tidal forcesat the singularity, but on the other hand, it makes another

singularity -a singularity of strong couplingfor a physical field such as

G ∝ 1/Φ. Such problems were already dealt with in superstring and brane

cosmology where both the curvature singularity and a strongcoupling

singularity appeared (choice of coupling, quantum corrections).
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5. Conclusions

Currently one is able to differentiatequite a number of cosmological

singularities with completely different properties- despite many of them are

geodesically complete, they still lead to a blow-up of various physical

quantities (scale factor, energy density, pressure, physical fields).

Some of these singularitiesmay serve as dark energy, especially if they are

quite close in the near future. For example,an SFS may even appear in 8.7

Myr with no contradiction with bare supernovae data. It can befitted to a

combined SnIa, CMB and BAO data, but at the expense of admitting an

approach to a Big-Bang by a fluid which is not exactly dust (m=0.66), but

has a slightly negative pressure (m = 0.73 and so w = -0.09).

An interesting proposal is to investigatehow the singularities are influenced

by varying physical constants. In particular, we may look for the answer if

it is possible to"regularize" (remove infinities) or changethese singularities

and what are the physical consequences of such an action, because what we

face is usually the new "singularity" in a physical constant/field which acts

to remove/change the type of singularity.Standard and exotic singularities regularized by varying constants – p. 36/36
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