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over the last decade a lot of exotic (non-big-bang) types of
singularities have been uncovered - how can they be influende
by the variability of the fundamental constants?

Content:
1. Introduction.
2. Standard and exotic singularities in cosmology.
3. Varying constants theories.

4. Varying constant versus cosmic singularities.

5. Conclusions.
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Standard Einstein-Friedmann equations are two equatrieree unknown functions of time
a(t),p(t), o(?)

3 (a® K
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€ 87CG <a2+a2) ’ )
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= ——— (2924 1) . 2
P 8%G<a+a2+a2> 2)

plusan equation of staje.qg., of a barotropic typey = const.> —1):

p(t) = wo(t) s at) o £3@FD | @3)

Until very recently (including first supernovae results)snof cosmologists studied only simplest - say
“standard” solutions - each of them starts with Big-Bang singularity in whicha — 0, o, p — oo

— one of them (ofK' = +1) terminates at the second singulaiiBig-Crunch)wherea — 0,

0,p —> 00

— the other two i = 0, —1) continue to arasymptotic emptinesg, p — 0 for a — oc.

BB and BC exhibitgeodesic incompletnessmidcurvature blow-up
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However, first supernovae observations ...

(QM,Q/\):
267 I T T T I 1T \7 (O, 1)
i ] (05,05) (0.0
i 8949 (1, 0) (1,0
24 1 £ (1.5-0.5)(2,0)
F Supernova 7 - o
i Cosmology . Zz8% = 2
22 Project P TO2E |
£
© 20— -
% r Calan/Tololo
4] i (Hamuy et al, >
B 18 A.J. 1996) g ]
161 ]
14 [ N R R ! L]
0.02 0.05 0.1 0.2 0.5 1.0
redshift z
... gave evidence for th&rongenergy condition
o+ 3p >0, o+p=>0. (4)

violation, butthe paradigm of the “standard” Big-Bang/Crunch singularit ies
remained untouched.
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2. Standard and exotic singularities in cosmology.

WMAP + SDSS + Supernovaembined bound on the dark energy barotropic
iIndex w (Tegmark et al. (2004)); recent: e.g. Amanullah et al. (2010

M showed that there was no sharp cut-off of the data ap = —p!!! so that
W the dark energy with p < —p (phantom) could be admitted!

W cosmic “no-hair” theorem violation - even a small fraction of phantom
dark energy may dominate the evolution - Big-Rip singulariy

= NEC, WEC, DEC violated!
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Since for phantorw < —1, then for convenience we may take
lw+1|=—(w+1) >0, (5)
soa(t) = t~2/3lv+1 and the conservation law for phantom gives
o o allvTtl (6)

Conclusion:the biggerthe universe growshe densett is, andit becomes
dominated by phantom (which overcomes\-term) —an exotic future
singularity appears — Big-Rip, p — oo for a — oc

Curvature invariant$?, R,,, R*", R, - R**?? divergeat Big-Rip

In a Big-Rip scenario everything @ulled aparon the approach to a
Big-Rip in a reverse order (Caldwell et al. PRL '03). Speaili, for
w = —3/2 Big-Rip will happen in 20 Gyr.
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Observational support for a Big-Rip gave a push to studies some other exotic
types of singularitiesas possible sources of dark energy

Barrow (2004 )dropped an assumption about the imposition of the equaftion o
state (3)

p # p(0), (7)

and investigated how the energy density and pressure eviblore assumes the
analytic form of the scale factor only:

a(t) = a5+ (1= 0)y" —6(1-9)" , y= ®

whereas = a(ts) = const. and), m,n = const.

i = a | Pa-ay et 1y ©
a = % {m(m—l)(1—5)ym_2—5n(n—1)(1—y)n_2 . (10)

S Standard and exotic singularities reqularized by varyiostants — p. 7/36



Provided
1 <n<2, (11)

one gets apart from a Big-Bangtat 0 there is a new type of singularity at= ¢,
- a Sudden Future Singularity (SF@y type Il - Nojiri, Odintsov, Tsujikawa
2005) which:

— manifests as a singularity of presspr@r a) only

— leads to the dominant energy condition violation only Ict fae have:

a = const., a = const. p = const.

a— —o0o0 p—oo for t—t (12)

Interesting point:
Schwarzschildhorizon atr = r, - metric singulaycurvature invariants regular
Sudden Future Singularity att = t, - metric regulaycurvature invariants
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Sudden future singularities may be generalized to GSFS thlkea general scale
factor time derivative of an ordet.

a(?“) —  a, m(m N 1)t£m — 7T+ 1) (1 . 5) ym—r

n—1).(n—r+1)
t?"

S

b (cpye S o IR G
and choose (Barrow 2004, Lake 2004)- 1 < n < r. Then for any integer we
have asingularityin the scale factor derivative™, and consequentiy the
appropriatepressure derivative("—2).

None of the energy conditions (EC) are violated-for 3!!!
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The new exotic singularities were found by Type Il singulas which we will
call Finite Scale Factor - FS$ingularities are characterized by the following
conditions (Nojiri, Odintsov, Tsujikawa 2005):

a = as = const.,p,as — o0,

p|,Gs — o

The simplest way to get them is to apply the scale factor aangoveviously for
SFS, i.e.,

a(t) =as[0+(1=0)y" =61 —-y)"] ., ¥ (14)

t
ts
whereas = a(ty) = const. and, A, m,n = const., but with the range of
parameten changed from < n < 2 onto

O<n<l1
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Type IV singularity is when (Nojiri, Odintsov, Tsujikwawa)
a = as=const.,o — 0,p— 0, @, H — oo etc.
and so it issimilarto Generalized Sudden Future singularity with onihe

exception it also gives the divergence of the barotropic index in tAmbropic
equation of state

l.e.,
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Barotropic index w—singularity (Type V)

Assuming the following type of scale factor (MPD, DenkiexvR009):

Qs
CL(t) — 3 1 n—1
n—
-7 ()
2
— % Nag t\ 3
3
71 37 ( n—f)
2 n
P — 3
+ n—1 1 — - lt_ ) (15)
3~ ( n—1 ) 1 n 3y Us
2 n—%

with the admissible values of the parameters: w + 1 > 0 andn # 1.
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w-—singularity

one gets a blow-up of the effective barotropic index, i.e.,

wlts) = 5 [2a(ts) 1] > oo (16)
accompanied by

p(ts) — 0; Q(ts) — 0. (17)

There is an amazinguality between the Big-Bang and thesingularityin the

form

1 1 1
PBB <> —, ©OBB<? —, WBB<%? — . (18)

w Qw ww
In other words:

pB — o0; op — o0, wpp — 0;app — 0
Pw — 0; 0w — 0; wy — 00 Ay, — a5 = CONSt.
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Type O - Big-Bang (Big-Crunch) — 0, p — o0, 0 — o
Type | - Big-Ripa(ts) — oo (ts < o), p — 00, 0 — oo (Caldwell 2002)

Type Il - Sudden Future (includes Big Boost and Big-Brakg),) = const.,
o = const.,p — oo (Barrow 2004)

Type llg - Generalized Sudden Futuré )= const.,0 = const.,p =const.,
a — oo etc.,w < oo (Barrow 2004)

Type Il - Finite Scale Factor (also Big-Freezd} ) = const.,0o — oo,
p — oo (NOT 2005, Denkiewicz 2011)

Type IV - Big Separationa(ts)=const.,p = o = 0, w — 00, & — oo etc.
(NOT 2005) (and generalizatiops= o =const. Yurov 2010)

Type V -w-singularitya(t,)= const.,p = o = 0, w — oo (MPD,
Denkiewicz 2009) (and generalizations=const. Yurov 2010)

Little-Rip a(ts) — oo, o(ts) — oo (ts — 00),
Pseudo-Rip(ts) < oo (ts — oo) (Frampton et al. 2011, 2012)
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As an example let us take an SFS which is determinedlidg\a-up of the
Riemann tensoand its derivatives.

Geodesics do not feel SFSs at all, since geodesic equatemsisingular for
as = a(ts) = const. (Fernandez-Jambrina, Lazkoz PRD 74, 064030 (2006))

dt \* P? 4+ KIL?

— A 19
(dT) + a?(t) (19)

dr Picosop + P sin ¢
— = 1 — Kr2 20
dr a2(1) V1-Kr?, (20)

do L
_ , 21
dr a’(t)r? (21)
Geodesic deviation equation
D?n®
o I6] o

2 + R%. su"nu® =0, (22)

feels SFS Since at: tS we have the Rieman Q‘;t;r%mgﬁm@isimar@& teqularized by varvioostants — p. 15/36



Tipler's (Phys. Lett. A64, 8 (1977)) definition (of a weak gutarity):
fOT dr’ fOT dr" R pu®ul
does not diverge on the approach to a singularity at

Krélak’s (CQG 3, 267 (1988)) definition (of a weak singulgyit
f dr' R puu®
does not diverge on the approach to a singularity at

Type 0 (BB, BC): T, K - strong

Type | (BR): T, K - strong

Type Il (SFS): T, K - weak

Type llg (GSFS): T, K - weak

Type lll (FSF): T - weak, K - strong

Type IV (BS): T, K - weak

Type V (w-sing.): T, K - weak (Fernandez-Jambrina (PRD, 2010

Standard and exotic singularities reqularized by varyiorstants — p. 16/36



SFS - supernovae only (MPD et al. 2007): distance modujus- m — M for the
CC model {Hy = 72kms t*Mpc™, Q,,,0 = 0.26, Q¢ = 0.74) (dashed curve) and
SFS modelfr = 2/3 = 0.6666,n = 1.9999, 6 = —0.471, yo = 0.99936) (solid
curve). Open circles are for the ‘Gold’ data and filled cisckge for SNLS data.
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SFS: Supernovae, CMB shift parameter, and BAO (Denkiewiczteal. 2012)-

fits if m ~ 0.72, w = —0.82. Also FSF can do (Denkiewicz 2012).
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It has been shown thguantum effect¢e.g. Houndjo et al.
arxiv:1203.6084) maghange the strengthf exotic singularities (e.g SFS

to FSF).

On the other hand, varying constants cosmologies have Ipgdie@to
solve standard cosmology probleswgch as the horizon and flatness
problem (e.g. Albrecht, Magueijo 1999).

Our idea is to apply them to solve thangularity problemn cosmology.

We can also ask if varying constants theowas soften/strengthdahe
standard and exotic singularities?
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First fully quantitative framework: Brans-Dicke scalansor gravity (1961)

The gravitational constatdt is associated with an average gravitational potential
(scalar field)p surrounding a given particle:

< ¢ >=GM/(c/Hp) x 1/G = 1.35 x 10°®g/cm. The scalar field gives the
strength of gravity

|
G = 167md (23)
With the action
4 w
S= [ day=g (®R - 20,00"®+ A+ L) (24)

it relates to low-energy-effective superstring theorydor —1
String coupling constant (running) = exp (¢/2) changes in time witlp - the
dilaton and® = exp (—¢).
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Varying speed of light theories (VSL): Albrecht & Magueijcocel (AM model)
(1999)(Barrow 1999; Magueljo 2003):

¢t = p(z*) (25)
and so the action is
B 4 - (R + 2A)
S—/dx\/ g[ L6rC + Ly, + Ly (26)

AM model breaks Lorentz invariandgelativity principle and light principle) -
preferred frame (cosmological or CMB) in which the field iswmally coupled to
gravity.

Solves basic problems of standard cosmology: horizon prolaind flatness
problem.

Ansatz: Friedmann with = pga=37, ¢(t) = coa™ - solution if

n < (1/2)(2 - 37).
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Magueijo covariant (conformally) and locally invariant ded (2000, 2001):

Y = In (ﬁ) or ¢=cpe?, (27)
Co
with the action
4
| 167G
with
Ly = k()V VY . (29)

Further assumptiony — 5 = 4.

Interesting subcases:

a = 4; 8 = 0 - Brans-Dicke withp g p = ¢*¥ /G andk(¢) = 16wpp(¢BD)-
a = 0; 8 = —4 - minimal VSL theory.
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Varying fine structure constant(or chargee = epe(x*) theories (Webb et al.
1999, Sandvik 2002)

S= [dtoy=g (R 50,000 - {fu e 4 L) (@0

with ¢ = Ineandf,, = eF},,.

Assume linear expansiaiY = 1 — 87G((v — 1g) = 1 — Aa/a with the
constraint on the local equivalence principle violeh¢g < 1073, The relation to
DE is:

(87TG dcf;pa )2

0, (31)
This can be tested while mimicking the dark energy by spgcaigh CODEX
(COsmic Dynamics EXplorer) a device attached to planned E{European
Extremely Large Telescope) measuring the so-called r&astfi (or

Sandage-Loeb effect) far< z < 5 (Vielzeuf and Martins 2012).
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We consider the Friedmann universevanying speed of light (VSLiheories and
varying gravitational constant theories as followsd - mass densitys = oc?(t) -
energy density ivm =3 = Nm™2 = kgm~'s72)

a2 c?
o(t) = 872( ) <a2 + kay)) , (32)
c? i G c?
p(t) = —SM% (25 + o ka—f)) , (33)
and the energy-momentum “conservation law” is
o0 +3% (o0 + 5 ) = oG +3 s - (39
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We suggest a general form of the scale factor (MPD, K. Maro3€RkP 02
(2013), 012), whicladmits big-bang, big-rip, sudden future, finite scale faatul
w-singularitiesand reads as

a(t) = ag (ti) exp (1 — ti) : (35)

with the constants,, a,, m, n. Fork = 0 we have

3 m n AN i
) = gy |75 (1 %) ] ! %6)
B A(t) | m(3m—2) mn t\" "
plt) = T 81G (1) N (1_5) (37)
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The scale factor.

Form < 0 we havea big-rip singularity- a — oo, 0 — oo, p — oo att = 0;
Forl < n < 2 we havea sudden future singularifFS) which appears at= ¢,
(a = as, 0 = const.,p — oc0);

For0 < n < 1 we havea stronger finite scale factor singular(lySF) att = ¢,
(a = ag, 0 — 00, p — 00).

In fact, forl < n < 2 only the last term in the pressure of the tye- ¢/t,)"
blows-up, while for) < n < 1 two more termg1 — ¢/t,)"~ ! and

(1 —t/ts)?("=1) do.
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One bears in mind the scale factbrl(35), the energy derislyai3d pressure (B7)
Regularizing a Big-Bang singularity by varyirg

If
1

e

G(t) (38)

which is a faster decrease than in Dirac’s LMHx 1/¢, but influences less the
temperature of the Earth constraint (Teller 1948).

Both divergence ip andp are removed, though at the expense of having the
"singularity" of strong gravitational coupling — oo att — 0.

In the Dirac’s case, only the singularity can be removed.
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regularizing singularities by varying constants: SFS

Regularizing an SFS singularity by varyiag
If

N3

e(t) = co (1 _ i) | (39)

ts

then

0= -5t [“2=2 (1)

p+n—1 2 p+2n—2 p+n—2
—1
_ e (1—i> +3"’—(1—i) PN )<1—i) ]

tt, ts t2 t

and the singularity of pressure is regularized proviged 2 — n, (1 < n < 2).

Standard and exotic singularities reqularized by varyiostants — p. 28/36



Physical consequenckght eventually stopat the singularity. Same happens in
loop quantum cosmology (LQC) where it is called the anti4oewan limit

c=co \/1 — 0/0. — 0 for o — o, with o, being the critical density (Cailettau et
al. 2012). The low-energy limit < ¢ gives the standard limit — c.

It also appears naturally in Magueijo model ((Magueijo, P&3) 043502 (2001)))
in which black holes are not reachable since the light stoggseahorizon (despite
they possess Schwarzschild singularity).

Besides, both options= 0 andc = oo are possible in this model.
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In the limit m — 0 we have an exotic singularity scale factor given by
a(t) = asexp (1 — t/ts) and so from[(36) and (B7) we have

3 n? £ 2
Qew(t) — 87TG(t) t? <1 o E) ) (40)
c2(t) n? £\ 2 n(n —1) t\" "’
o = — — — — 2 1 — — 41
) = s P2 (-n) e (n)
so that
pex(t) 2n—1 1 1 )
ex — = — |1 = 7l = — | = — Z{ex t , 42
O R L R (R U
- tS —

which isaw-singularityforn > 2 (p = 0 = 0, w., — 00). Its regularization by
varyingc(t) is impossible since there is medependence here.

Standard and exotic singularities reqularized by varyionstants — p. 30/36



regularizing singularities by varying constants: SFS

Regularizing an SFS singularity by varyiag
If we assume that

G(t) = Gy (1 _ })_ ] (43)

(r = const.,GGo = const.) which changes (36) and(37) to

3 2 4 T 9 4 r+n—1
oft) = (i) -2 (-
87TG() t2 ts tts ts
ng 4 r+2n—2
Tz (17) ’ .
2 3Im — 2 / r+n—1 2 r+2n—2
o) = - S (mBm=2) () N _gmn 1 +38 (1o =
87Go t2 ts tts , t2 ts
n(n — 1 £\
o2 (1) ] (5
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From (44) and[(45) it follows that an SFS singularity< n < 2) is regularized
by varying gravitational constant when

r>2-—n, (46)
and an FSF singularit§) < 1 < n) is regularized when

r>1—n . (47)
On the other hand, assuming that we have an SFS singuladtthah

—1<r<o, (48)

we get that varying= may change an SFS singularity onto a stronger FSF
singularitywhen
O<r+n<l. (49)
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The equation of state of the (anti-)Chaplygin gas reads as

A A
t)=+—— =+ A>0) 50
where the “-” sign is for Chaplygin gas while the “+” sign igfanti-Chaplygin
gas case and the unit dfis the energy density(=pressure) squafe: —°.

Inserting [(50) into[(34) gives

, a (0*ctt) F A\ G(t) . ke(t)é(t)
ot) +3 < (D) (1) ) =~ an V3 mcmar (51)

We assume both varying = G(t) andc = ¢(¢) though with zero curvature
(k = 0) as follows

o(t)c*(t) = B = const. (52)
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The solution of[(511) reads as

o(t)a*? (t)G(t) = E = const. , (53)
where we have defined
B?2x A
T="h (54)
Putting the standard big-bang scale faettn) = (¢/t,)%/37, we finally have
Et? A
Q(t) - t2G(t) ) p(t) — :FE = const. ’ (55)

which givep — oo andp(0) = 0 providedG(0) = const.# 0. The singularity at
t = 0in p andp can be regularizeby takingG(t) « 1/t* at the expense of
having a constant pressure (cosmological term) insteadroffaressure.
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In order to regularize an SFS or an FSF singularity by varyiig thelight
should slow and eventually stqpopagating at a singularity. Similar effects
were found in loop quantum cosmology (LQC) as well as in VSL fo
Schwarzschild horizon (Magueijo 2001) - speed of light teex zero or
Infinity at » = r,. An observer cannot reach this surface even in his finite
proper time.

To regularize an SFS, FSF by varying gravitational constgimnj - the
strength of gravity has to become infindgea singularity. On the one hand,

It IS quite reasonable because of the requiremeantéwcome an infinite
(anti-)tidal forcesat the singularity, but on the other hand, it makes another
singularity -a singularity of strong couplinfpr a physical field such as

G o« 1/®. Such problems were already dealt with in superstring aadéor
cosmology where both the curvature singularity and a stomugpling
singularity appeared (choice of coupling, quantum coloes).
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Currently one is able to differentiatpiite a number of cosmological
singularities with completely different propertiedespite many of them are
geodesically complete, they still lead to a blow-up of vas@hysical
guantities (scale factor, energy density, pressure, palgelds).

Some of these singularitiesay serve as dark energgspecially if they are
quite close in the near future. For examgla,SFS may even appear in 8.7
Myr with no contradiction with bare supernovae data. It cafitbed to a
combined Snla, CMB and BAO dathut at the expense of admitting an
approach to a Big-Bang by a fluid which is not exactly dust (66} but
has a slightly negative pressure (m = 0.73 and so w =-0.09).

An interesting proposal is to investigdtew the singularities are influenced
by varying physical constantfn particular, we may look for the answer if
It is possible td'regularize” (remove infinities) or chandleese singularities
and what are the physical consequences of such an acticaydsewhat we
face is usually the new "singularity" in a physical constizgitd which acts
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