Redshift drift in inhomogeneous pressure cosmology

Mariusz P. Dąbrowski

Institute of Physics, University of Szczecin
and
Copernicus Center for Interdisciplinary Studies, Kraków
References

- MPD, Grav. Cosmol. 8, 190 (2002)
- MPD, PLB 625, 184 (2005) (gr-qc/0505069)
1. Universe symmetries. Acceleration as back-reaction of inhomogeneities.

2. Complementary models of the spherically symmetric Universe.

3. Inhomogeneous pressure models - properties.

5. Redshift drift in inhomogeneous pressure models.

6. Conclusions
In the context of dark energy problem there has been more interest in the non-friedmannian models of the universe which could explain the acceleration only due to inhomogeneity. One of the strongest claims was that we are living in a spherically symmetric void of density described by the Lemaître-Tolman-Bondi dust spheres model

J. Uzan, R. Clarkson, G.F.R. Ellis (PRL, 100, 191303 (2008))
R.R. Caldwell and A. Stebbins (PRL, 100, 191302 (2008))
C. Clarkson, B. Bassett and T. H-Ch. Lu (PRL, 101, 011301 (2008))
and many others
fortunately commented by A. Krasiński, R.A. Sussmann, K. Bolejko, M.-N. Céléri (e.g recent ArXiv:1206.6026) that not only LTB is worth investigating.

In fact, there are two ways to get large-scale structure in cosmology:

perturb FRW models \leftrightarrow consider exact inhomogeneous models
How symmetric is the universe?

- Einstein equations are *complicated* and to solve them we just *assume symmetries* (Occam’s razor - if we play with simple symmetric models observationally, we do not need to bother about any more complicated ones).

- Why not to *paradigm* this by a fundamental principle - the *Copernican Principle* that we do not live in the center of the Universe (we really do not want to be special in the Universe).

- However, observations are *from one point* in the Universe and extend only onto the one (and unique) past light cone (hopefully not - redshift drift!).

- Even *CMB* we observe from one point - this *proves isotropy*, but not necessarily homogeneity (isotropy with respect to any point in the Universe).

- Should not we first *start with observations* of the cone and then make conclusions related to modeling the universe (cf. observational cosmology programme of G.F.R. Ellis and collaborators).
In other words - homogeneity needs a check.

Suppose we have an inhomogeneous model of the Universe with the same (small) number of parameters as a homogeneous dark energy model and they both fit observations very well.

Could we differentiate between these two models?

The simplest inhomogeneous models are the models with only one or two parameters which are spherically symmetric (isotropic with respect to only one point).

Some even argue (Clarkson and Barrett, CQG ’99, ’00) that even if we proved isotropy for all observers in the universe, it would still not be enough to prove homogeneity, unless we proved all the fluid components in the universe were comoving perfect fluids.
In fact, even if we restrict ourselves to spherical symmetry then there are **two complementary models** of the universe and they can both mimic homogeneous dark energy models!

These are: the **inhomogeneous density** (dust shells) Lemaître-Tolman-Bondi (LTB) models and **inhomogeneous pressure** (gradient of pressure shells) Stephani models.

Apparently for some reasons (conservatism?) **most of the researchers investigate the former** and only a few investigate the latter.

Besides, there are a lot of less symmetric or purely inhomogeneous models (Goode (1986), Szafron (1977), Szekeres (1975), Wainwright-Goode (1980), Ruiz-Senovilla (1992) etc.) to investigate as candidates for dark matter. See e.g. M.-N. Célérier (ArXiv:1206.6026).
New paradigm of inhomogeneity?

- I suggest investigating **at least a complement of LTB** - spherically symmetric Stephani model of pressure gradient which also possesses a generalization which is totally spacetime inhomogeneous.

- MPD and M. Hendry (Ap.J. ’98) **first compared** an inhomogeneous model (no matter if density or pressure) of the Universe with observational data from supernovae and showed that they can be fitted.

- Despite inhomogeneous density (LTB) models were theoretically explored before (since Lemaître - 1933) only **later** they were tested observationally against supernovae (e.g. K. Tomita, Prog. Theor. Phys. 106, 929 (2001); K. Bolejko, astro-ph/0512103).

- I also suggest that **we should carry on investigating more general models** of the universe and, in particular, check if they can give exact matter distribution in the universe which could be **equivalent to standard FRW perturbed models**.
Let us consider **advantages of the inhomogeneous pressure models** and show that they may fit observations, so that they are a good candidate for explanation of cosmic acceleration by an inhomogeneity.

In order to make a **complementary analysis** with LTB models the following table proves useful:

<table>
<thead>
<tr>
<th></th>
<th>Pressure</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRW</td>
<td>$p = p(t)$</td>
<td>$\rho = \rho(t)$</td>
</tr>
<tr>
<td>LTB</td>
<td>$p = p(t)$</td>
<td>$\rho = \rho(t, r)$ - nonuniform</td>
</tr>
<tr>
<td>Stephani</td>
<td>$p = p(t, r)$ - nonuniform</td>
<td>$\rho = \rho(t)$</td>
</tr>
</tbody>
</table>
SS Lemaître-Tolman-Bondi Universe

– is the only spherically symmetric solution of Einstein equations for pressureless matter \((T^{ab} = \rho u^a u^b) \) and no cosmological term (G. Lemaître, Ann. Soc. Sci. Brux. A 53, 51 (1933); R.C. Tolman, Proc. Natl. Acad. Sci., 20, 169 (1934); H. Bondi MNRAS 107, 410 (1947))

\[
ds^2 = -dt^2 + \frac{R'^2}{1-K} dr^2 + R^2 (d\theta^2 + \sin^2 \theta d\phi^2)
\]

(1)

where

\[
R = R(t, r); \quad R' = \partial R/\partial r; \quad K = K(r)
\]

(2)

The Einstein equations reduce to

\[
\dot{R}^2 = \frac{2M(r)}{R} - K(r); \quad 2M' = \kappa \rho R^2 R'
\]

(3)

and are solved by
SS Lemaître-Tolman-Bondi Universe

\[R(r, \eta) = \frac{M(r)}{K(r)} \Phi'(\eta); \quad t(r, \eta) = T_0(r) + \frac{M(r)}{K^{3/2}(r)} \phi'(\eta), \]

(4)

where for \(K(r) < 0 \) (hyperbolic), \(K(r) = 0 \) (parabolic), and \(K(r) > 0 \) (elliptic) appropriately \(K(r) \) is a spatially dependent "curvature index") we have

\[\Phi(\eta) = (\sinh \eta - \eta; \eta^3/6; \eta - \sin \eta). \]

(5)

Regularity conditions:
- existence of a regular **center of symmetry** \(r = 0 \) – implies \(R(t, 0) = \dot{R}(t, 0) = 0 \) and \(M(0) = M'(0) = K(0) = K'(0) = 0 \) and \(R' \rightarrow 1 \).
- hypersurfaces of constant time are **orthogonal** to 4-velocity and are of topology \(S^3 \) – implies the existence of a second center of symmetry \(r = r_c \) (with some ‘turning value’ \(0 < r_{tv} < r_c \))
- a ‘shell-crossing’ singularity should be **avoided** – implies \(R'(t, r) \neq 0 \) except at turning values

Redshift drift in inhomogeneous pressure cosmology – p. 11/50
SS Lemaître-Tolman-Bondi Universe

Kinematic characteristics of the model:

$$u_{a;b} = \frac{1}{3} \Theta h_{ab} + \sigma_{ab} \, ,$$

(6)

Expansion scalar:

$$\Theta = \frac{2 \dot{R}}{R} + \frac{\dot{R}'}{R'} \, ,$$

(7)

Shear tensor and scalar:

$$\sigma^{ab} = \Sigma \zeta^{ab} ; \quad \zeta^{ab} \equiv h^{ab} - 3 v^a v^b ;$$

(8)

$$\Sigma = \frac{1}{6} \sigma_{ab} \zeta^{ab} = - \frac{1}{3} \left(\frac{\dot{R}'}{R'} - \frac{\dot{R}}{R} \right) \, ,$$

(9)

and $$v^a = \sqrt{h^{rr} \delta^a_r}$$ is the unit vector orthogonal to $$u^a$$ and to the 2-sphere orbits of $$SO(3)$$.

Redshift drift in inhomogeneous pressure cosmology – p. 12/50
In LTB models a Big-Bang is not necessarily instantaneous - different points start at different moments.

Friedmann limit is obtained for:

\[R(t, r) = a(t)r; \quad M(r) = M_0 r^3; \quad K(r) = k_0 r^2, \quad (10) \]
SS Stephani Universe

– is the only spherically symmetric solution of Einstein equations for perfect-fluid energy-momentum tensor \((T^{ab} = (\rho + p)u^a u^b + pg^{ab})\) which is **conformally flat** and **embeddable** in a 5-dimensional flat space (H. Stephani Commun. Math. Phys. 4, 167 (1967); A. Krasiński, GRG 15, 673 (1983)). After introducing a Friedmann-like time coordinate (cf. later) we have

\[
ds^2 = -\frac{a^2}{\dot{a}^2} \frac{a^2}{V^2} \left[\left(\frac{V}{a} \right) \right]^2 dt^2
+ \frac{a^2}{V^2} \left[dr^2 + r^2 \left(d\theta^2 + \sin^2 \theta d\phi^2 \right) \right],
\tag{11}
\]

where

\[
V(t, r) = 1 + \frac{1}{4} k(t) r^2,
\tag{12}
\]

and \((\ldots) \cdot \equiv \partial / \partial t\). The function \(a(t)\) plays the role of a **generalized scale factor**, \(k(t)\) has the meaning of a **time-dependent ”curvature index”**, and \(r\) is the radial coordinate.
The energy density and pressure are given by

\[\varrho(t) = 3 \left[\frac{\dot{a}^2(t)}{a^2(t)} + \frac{k(t)}{a^2(t)} \right], \]

\[p(t, r) = \varrho(t) \left\{ -1 + \frac{1}{3} \frac{\dot{\varrho}(t)}{\varrho(t)} \frac{\left[\frac{V(t, r)}{a(t)} \right]}{\left[\frac{V(t, r)}{a(t)} \right]} \right\} \equiv w_{\text{eff}}(t, r) \varrho(t), \]

and generalize the standard Einstein-Friedmann relations

\[\varrho = 3 \left(\frac{\dot{a}^2}{a^2} + \frac{k}{a^2} \right), \]

\[p = -\left(2 \frac{\ddot{a}}{a} + \frac{\dot{a}^2}{a^2} + \frac{k}{a^2} \right) \]

to inhomogeneous models.
SS Stephani Universe

Kinematic characteristic of the model:

\[u_{a;b} = \frac{1}{3} \Theta h_{ab} - \dot{u}_a u_b , \quad \dot{u} \equiv \left(\dot{u}_a u^a \right)^{\frac{1}{2}} . \tag{17} \]

where \(u \) is the acceleration scalar and the acceleration vector

\[
\dot{u}_r = \left\{ \frac{a^2}{a^2} \frac{a^2}{V^2} \left[\left(\frac{V}{a} \right) \cdot \right] \right\}_r
\]

while the expansion scalar is the same as in FRW model, i.e.,

\[\Theta = 3 \frac{\dot{a}}{a} . \tag{19} \]
3. Inhomogeneous pressure models - properties.

The general Stephani metric reads as

\[
ds^2 = - \frac{a^2}{\dot{a}^2} \frac{a^2}{V^2} \left[\left(\frac{V}{a} \right) \right]^2 dt^2 + \frac{a^2}{V^2} [dx^2 + dy^2 + dz^2], \tag{20}
\]

\[
V(t, x, y, z) = 1 + \frac{1}{4} k(t) \left\{ [x - x_0(t)]^2 + [y - y_0(t)]^2 + [z - z_0(t)]^2 \right\},
\]

and \(x_0, y_0, z_0\) are arbitrary functions of time. This is just a generalization of the FRW metric in isotropic coordinates

\[
ds^2 = -dt^2 + \frac{a^2(t)}{1 + \frac{1}{4}kr^2} (dr^2 + r^2 d\Omega^2), \quad r^2 = x^2 + y^2 + z^2 \tag{21}
\]

which by a transformation \(\tilde{r} = 1 + (1/2)kr^2\) can be brought to a standard form

\[
d\tilde{s}^2 = -dt^2 + a^2(t) \left(\frac{d\tilde{r}^2}{1 - kr^2} + \tilde{r}^2 d\Omega^2 \right). \tag{22}
\]
Inhomogeneous pressure models - properties

Properties of general Stephani models:

- **really inhomogeneous** (not even SS) - they do not admit any spacetime symmetry at all
- the 3-dimensional hyperspaces of constant time are **maximally symmetric**
- the models are **conformally flat** (Weyl tensor $C_{abcd} = 0$)
- can be embedded into a **5-dimensional flat** pseudoeuclidean space (they are embedding class one – in general any 4-dim manifold can be embedded at least locally in a 10-dim flat space)
- matter **does not move** along geodesics (there is non-zero acceleration $\dot{u}_a \neq 0$); models are **shearfree** $\sigma_{ab} = 0$
- the curvature index $k = k(t)$ **changes in time** so that the spatial curvature may change during evolution
- **possess the Friedmann limit** when the curvature index $k(t) \rightarrow \text{const.}$

 $= 0, \pm 1$
Inhomogeneous pressure models - topology

Topology can be uncovered, if we assume the energy density to be constant, i.e.,

\[
\frac{8\pi G}{c^2} \rho = 3C_0^2 = \text{const.},
\]

(23)

\[
\frac{8\pi G}{c^4} p = - 3C_0^2 = \text{const.},
\]

(24)

which is essentially the de Sitter Universe with dark energy equation of state \(w = -1 \) with global topology being \(S^3 \times R \) represented by a one-sheet hyperboloid,

but with local topology of the constant time hypersurfaces (index \(k(t) \)) changing in time.

Usually we cut hyperboloid by either \(k = 1 \) (\(S^3 \) topology), \(k = 0 \) (\(R^3 \)) or \(k = -1 \) (\(H^3 \)).

Here we have “3-in-1” and the Universe may either “open up” or “close down”.
Inhomogeneous pressure models - topology

General model:

- Global topology still $S^3 \times \mathbb{R}$. However, they are just specific deformations of the de Sitter hyperboloid near the “neck circle”.
- The center of symmetry is moving around the deformed hyperboloid.
- In fact, due to a choice of the radial coordinate, there are two antipodal centers of symmetry (as in LTB model).
standard **Big-Bang** singularities $a \to 0$, $\varrho \to 0$, $p \to 0$ are possible (FRW limit)

Finite Density (FD) singularities of pressure appear at some particular values of the spatial coordinates x, y, z (or a radial coordinate r, if in a SS model)

Π-boundary - a spacelike boundary which divides each negative curvature $k(t) < 0$ section onto the two sheets (the “far sheet” and the “near-sheet”)

Π-boundary appears whenever

$$V(t, r) = 1 + (1/4)k(t)[(x - x_0)^2 + \ldots] = 0$$

the Universe behaves asymptotically de Sitter on a Π-boundary ($p = -\varrho$)

There is **no global equation of state** - it changes from place to place (depends on x, y, z or r) and on the hypersurfaces $t = \text{const.}$
FD singularities versus SFS singularities

- In inhomogeneous pressure models there are Finite Density singularities of pressure.

- In standard FRW cosmology there exist exotic (sudden future) singularities of pressure (SFS) with finite scale factor and energy density, i.e.,

$$a = \text{const.}, \quad \dot{a} = \text{const}, \quad \rho = \text{const}, \quad \ddot{a} \to \pm \infty, \quad p \to \mp \infty. \quad (25)$$

- They are different: FD singularities are spatial (appear somewhere in space) while SFS are temporal (appear in time on one \(t = t_s\) of the hypersurfaces).

- There are hybrid models in which appear both FD and SFS singularities of pressure (MPD, PRD ’05).
FD singularities versus SFS singularities

Such “inhomogeneized” SFS may appear in a general (no symmetry at all) inhomogeneous pressure model which can be shown by inserting the time derivative of the Stephani energy density function and the function $V(t, x, y, z)$ into the expression for the pressure, i.e.,

$$
p(t, x, y, z) = -3 \frac{\dot{a}^2}{a^2} - 3 \frac{k}{a^2} + \frac{\ddot{a}}{a} \left[2 \frac{\ddot{a}}{a} - 2 \frac{\dot{a}^2}{a^2} + \frac{1}{a^2} \left(\frac{\dot{k}}{\dot{a}} - 2k \right) \right] \frac{V(t, x, y, z)}{a(t)}.
$$

(26)

It emerges that a SFS $p \to \pm \infty$ appears for $\ddot{a} \to -\infty$, if $(V/a)/(V/a)$ is regular and the sign of the pressure depends on the signs of both \dot{a}/a and $(V/a)/(V/a)$.

In fact, SF singularities appear independently of FD singularities whenever $\ddot{a} \to -\infty$ and the blow-up of p is guaranteed by the involvement of the time derivative of the function $C(t)$ in (14).
I found two explicit models which are called Model I and Model II (note: time coordinate will be labeled τ instead of t and the scale factor $R(t)$ instead of $a(t)$). For the Model I we have

\begin{align*}
k(\tau) &= -4 \frac{a}{c^2} R(\tau), \\
R(\tau) &= a\tau^2 + b\tau + d,
\end{align*}

(27, 28)

\begin{equation}
V(\tau, r) = 1 - \frac{a}{c^2} \left(a\tau^2 + b\tau + d \right) r^2,
\end{equation}

(29)

\begin{equation}
\Delta \equiv 4ad - b^2 + 1 = 0,
\end{equation}

(30)

with a, b, $d = \text{const.}$ and for the cosmic time τ taken in sMpc/km we have: $[a] = \text{km}^2/(s^2\text{Mpc})$, $[b] = \text{km/s}$ and $[c] = \text{Mpc}$. More general models appear for $\Delta \neq 0$ - the FD pressure singularity shows up at a finite distance $r = 2/\sqrt{-\Delta}$ (MPD ’93, Barrett and Clarkson CQG 2000).
Exact inhomogeneous pressure models

For the Model II we have

\[k(\tau) = -\frac{\alpha \beta}{c^2} R(\tau), \]
\[R(\tau) = \beta \tau^{\frac{2}{3}}, \]
\[V(\tau, r) = 1 - \frac{1}{4c^2} \alpha \beta^2 \tau^{\frac{2}{3}} r^2, \]

with \(\alpha, \beta = \text{const.} \) with \([\alpha] = (s/km)^{\frac{2}{3}} \text{Mpc}^{-\frac{4}{3}}\) and \([\beta] = (km/s)^{\frac{2}{3}} \text{Mpc}^{\frac{1}{3}}\). Both models possess the Friedman limit; \((a \to 0 \text{ for MI and } \alpha \to 0 \text{ for MII}). The common point between MI and MII is that for them \((\frac{k}{R}),_\tau = 0\), where \((\ldots),_\tau \equiv \frac{\partial}{\partial \tau}.\)
Another example of the model II (and I as well since $\beta = -4a^2/c^2 \ (a = \text{const.})$) is Stelmach-Jakacka model (CQG 18, 2643 (2001)) in which one assumes that at the center of symmetry the standard barotropic equation of state

$$\frac{p(\tau)}{c^2} = w \varrho(\tau) \quad (34)$$

is fulfilled. For $w = 0$ one has the dust equation of state at the center, for $w = -1/3$ one has the cosmic strings. This assumption gives that

$$\frac{8\pi G}{3c^2} \varrho(\tau) = C^2(\tau) = \frac{A^2}{a^{3(w+1)}(\tau)} \quad (A = \text{const.}) \quad (35)$$

and allows to write a generalized Friedmann equation as

$$\frac{1}{c^2} \left(\frac{a_{,\tau}}{a(\tau)} \right)^2 = \frac{A^2}{a^{3(w+1)}(\tau)} - \frac{\beta}{a(\tau)} \quad (36)$$
and
\[\frac{p(\tau)}{c^2} = \left[w + \frac{\beta}{4}(w + 1)a(\tau)r^2 \right] \varrho(\tau) = w_{eff}\varrho(\tau) . \] (37)

Similarly as in the Friedmann model, we can define critical density as
\[\varrho_{cr}(\tau) = \frac{3c^2}{8\pi G} \left(\frac{a_{,\tau}}{a(\tau)} \right)^2 \] (38)
and the density parameter \(\Omega(\tau) = \varrho(\tau)/\varrho_{cr}(\tau) \) which after taking \(\tau = \tau_0 \) gives
\[1 = \frac{A^2}{H_0^2a^3(w+1)(\tau_0)} - \frac{\beta c^2}{H_0^2a_0} \equiv \Omega_0 + \Omega_{inh} , \] (39)
and so
\[\beta = \frac{a_0H_0^2}{c^2} (\Omega_0 - 1) , \] (40)
with the unit \([\beta] = Mpc^{-1}\).
The four-velocity and the acceleration for MI and MII are

\[
\begin{align*}
 u_\tau &= -c \frac{1}{V}, \\
 \dot{u}_r &= -c \frac{V_r}{V}.
\end{align*}
\] (41)

The components of the vector tangent to zero geodesic are

\[
\begin{align*}
 k^\tau &= \frac{V^2}{R}, \\
 k^r &= \pm \frac{V^2}{R^2} \sqrt{1 - \frac{h^2}{r^2}}, \\
 k^\theta &= 0, \\
 k^\phi &= h \frac{V^2}{R^2 r^2},
\end{align*}
\] (42)

where \(h = \text{const.} \), and the plus sign in applies to a ray moving away from the centre, while the minus sign applies to a ray moving towards the centre. The acceleration scalar for MI and MII, respectively, is

\[
\dot{u} \equiv (\dot{u}_a \dot{u}^a)^{\frac{1}{2}} = \frac{V_r}{R} = \begin{cases}
- \frac{2}{c^2} \alpha \beta r, \\
- \frac{1}{2} \alpha \beta r,
\end{cases}
\] (43)

and it does not depend on the time coordinate at all.
Inhomogeneous pressure models - redshift

The point:
The further away from the center \(r = 0 \) is an observer, the larger acceleration he subjects.

The redshift is given by (for MI and MII, respectively)

\[
1 + z = \left(\frac{u_\alpha k^{\alpha}}{u_\alpha k^{\alpha}} \right)_O = \begin{cases}
\left[1 - \frac{\alpha}{c^2} (a \tau^2 + b \tau + d) r^2 \right] \\
\left[1 - \frac{\alpha}{c^2} (a \tau^2 + b \tau + d) r^2 \right] \\
\left[1 - \frac{1}{4} \alpha \beta^2 \tau^2 \frac{2}{3} r^2 \right] \\
\left[1 - \frac{1}{4} \alpha \beta^2 \tau^2 \frac{2}{3} r^2 \right] \\
\frac{1}{\beta \tau^{\frac{2}{3}}} \\
\frac{1}{\beta \tau^{\frac{2}{3}}} \end{cases} \frac{O}{G},
\]

(44)
The constant h and the angle ϕ between the direction of observation and the direction defined by the observer and the center of symmetry are related by

$$\cos \phi = \pm \sqrt{1 - \frac{h^2}{r^2}}.$$

(45)
Using [37] we can plot the dependence of the barotropic index on both time and radial coordinate (cosmic time is in Gigayears, the physical distance from the center at $r = 0$ is in Gigaparsecs (we assume $w = 0$ here):

The effective barotropic index is getting more and more negative simulating the dark energy for large distances form the center (at $r = 0$) and far from the big-bang singularity (at $t = 0$).
4. Inhomogeneous pressure models - luminosity distance.

Taking complexity of models into account, it is best to apply the series expansion of the redshift-magnitude formula (Kristian and Sachs 1966) given by (calculated to higher-orders in MPD & Stachowiak ’06)

\[
m_{bol} = M - 5 \log_{10} \left(u_{a;b} K^a K^b \right)_O + 5 \log_{10} cz + \frac{5}{2} (\log_{10} e) \left\{ \left(4 - \frac{u_{a;b,c} K^a K^b K^c}{(u_{a;b} K^a K^b)^2} \right) z + O \left(z^2 \right) \right\}_O ,
\]

where

\[
u_{a;b} = \frac{1}{3} \Theta h_{ab} - \dot{u}_a u_b , \quad h_{ab} \equiv g_{ab} + u_a u_b , \quad K^a \equiv \frac{k^a}{u_b k^b} , \quad u_a u^a = -1 .
\]

The projection of \(K^a \) onto the spatial hypersurfaces orthogonal to \(u_a \) is a spatial unit vector pointing in the observer direction

\[
n^a = -u^a - K^a , \quad n^a n_a = 1 .
\]
After some algebra we find redshift-magnitude relations for the Model I as follows (the only inhomogeneous pressure parameter is a, since we have chosen $b = 1$ and $d = 0$ without loosing a generality)

$$m = M + 25 + 5 \log_{10} \left[cz \left(\frac{a\tau_0^2 + \tau_0}{2a\tau_0 + 1} \right) \right] + 1.086 \left[1 + 4a \frac{(a\tau_0^2 + \tau_0)}{(2a\tau + 1)^2} \right] z. \quad (49)$$

This relation has no difference with the FRW relation

$$m_{bol} = M - 5 \log_{10} \tilde{H}_0 + 5 \log_{10} cz + 1.086 (1 - \tilde{q}_0) z, \quad (50)$$

provided we have defined the Hubble and deceleration parameters as

$$\tilde{H}_0 = \frac{2a\tau_0 + 1}{a\tau_0^2 + \tau_0}, \quad \tilde{q}_0 = -4a \frac{a\tau_0^2 + \tau_0}{(2a\tau + 1)^2}, \quad (51)$$

and they may be taken with the same values as in FRW models.
For the Model II we have

\[m_{bol} = M - 5 \log_{10} \tilde{H}_0 + 5 \log_{10} cz + 1.086 (1 - \tilde{q}_0) z, \quad (52) \]

where

\[\tilde{H}_0 = \frac{2}{3 \tau_0}, \quad \tilde{q}_0 = \frac{1}{2} - \frac{9}{8} c^2 \alpha \tau_0^{4/3}. \quad (53) \]

are the Friedman values of the Hubble and the deceleration parameters.
Inhomogeneous pressure models against supernovae data

In (MPD + Hendry ’98) we first compared with Perlmutter P97 (Ap.J. 483, 565 (1997)) data which was in favor of deceleration \((a < 0)\), but the advantage was that inhomogeneous pressure models gave a longer age of the Universe.

According to the current SnIa data (77 supernovae of Riess eta al. for \(z < 0.5\)) we have the best fit values of inhomogeneity parameter \(a\) of the Model I to be

\[
a = 10^6 km^2 / s^2 Mpc > 0.
\]
Godłowski, Stelmach and Szydłowski (CQG 21, 3953 (2004)) checked Stelmach-Jakacka (model II) which had approximate dust equation of state \(p = 0 \) at the center of symmetry \(r = 0 \).

Their results showed that

\[
\Omega_{inh,0} = 0.61^{+0.08}_{-0.10} \tag{55}
\]

so that the inhomogeneity can mimic the dark energy.

The inhomogeneity has dominated the universe quite recently so it influences only slightly the Doppler peaks (move them to larger l’s) and does not influence BBN nucleosynthesis at all since then it is just negligible.

Models of type I of arbitrary \(a, b \) and \(d \) have earlier been studied by Barrett and Clarkson (CQG 24, 5047 (2000)) and they also showed the model may fit to the observational data.
Since the acceleration scalar is

\[\dot{u} = -2\frac{a}{c^2} r , \]

(56)

with \(r \) being the radial coordinate of the model, then

the high pressure region is at \(r = 0 \) (center of symmetry), while the low (negative) pressure regions are outside the center, so that the particles are \textbf{accelerated away from the center}

which is a similar effect to that caused by the positive cosmological constant in \(\Lambda \)CDM model.

The difference is that in \(\Lambda \)CDM the pressure is \textbf{constant} everywhere while in Stephani models it \textbf{depends} on the spatial coordinates.

Similar configurations (pressure gradient) were obtained modeling \textbf{exotic stars} in generalized Chaplygin gas models (Kamenshchik 2008, 2009).
It is most challenge to actually compare inhomogeneous pressure model with supernovae data for non-centrally placed observers, i.e., us being slightly away from the center of symmetry. For the Stephani Model II the redshift-magnitude relation in series expansion gets a bit complicated (here $r \neq 0$, and $h \neq 0$ in the previous formulas)

$$m_{bol} = M + 25 + 5 \log_{10} \left[\frac{cz}{\frac{2}{3} \frac{1}{\tau_0} + \frac{1}{2} c \alpha \beta r_0 \cos \phi} \right] + 1.086 z \times \left[\frac{\frac{2}{3} \frac{1}{\tau_0} \left(1 + \frac{3}{4} \alpha \beta^2 \tau_0^2 r_0^2 \right) - c \alpha \beta \tau_0 \cos \phi + \frac{1}{2} c^2 \alpha \tau_0^{-\frac{3}{2}} \left(1 - \frac{5}{4} \alpha \beta^2 \tau_0^2 r_0^2 \right) \cos^2 \phi}{\left(\frac{2}{3} \frac{1}{\tau_0} + \frac{1}{2} c \alpha \beta r_0 \cos \phi\right)^2} \right].$$
Here we are **an example theoretical plot** for non-centrally placed observers.

A plot of the dependence of the apparent magnitude on the direction in the sky for the model MII. We fix the redshift of a galaxy to be \(z = 0.5 \) and \(\alpha c^2 = 100 \text{(km/sMpc)}^{-\frac{4}{3}} \), \(\beta = 1.1 \cdot 10^5 \text{(km/s)}^{\frac{2}{3}} Mpc^{\frac{1}{3}} \), \(\tau_0^{-1} = 75 \text{km/(sMpc)} - 1 < \cos \phi < 1 \) and \(r_0 = 0.1, 0.5, 1.0 \).
5. Redshift drift in inhomogeneous pressure models.

Redshift drift (Sandage 1962) - the idea is to collect data from two light cones separated by 10-20 years to look for a change in redshift of a source as a function of time.

There is a relation between the times of emission of light by the source τ_e and $\tau_e + \delta\tau_e$ and times of their observation at τ_o and $\tau_o + \delta\tau_o$:

$$ \int_{\tau_e}^{\tau_o} \frac{d\tau}{a(\tau)} = \int_{\tau_e + \delta\tau_e}^{\tau_o + \delta\tau_o} \frac{d\tau}{a(\tau)}, \quad (57) $$

which for small $\delta\tau_e$ and $\delta\tau_o$ reads as $\frac{\delta\tau_e}{a(\tau_e)} = \frac{\delta\tau_o}{a(\tau_o)}$.

Redshift drift in inhomogeneous pressure cosmology – p. 40/50
For small $\delta \tau_e$ and $\delta \tau_0$ we expand in Taylor series

\[
(u_ak^a)_o = (u_ak^a)(r_0, \tau_0 + \delta \tau_0) = (u_ak^a)(r_0, \tau_0) + \left[\frac{\partial (u_ak^a)}{\partial \tau} \right]_{(r_0, \tau_0)} \delta \tau_0
\]

\[
(u_ak^a)_e = (u_ak^a)(r_e, \tau_e + \delta \tau_e) = (u_ak^a)(r_e, \tau_e) + \left[\frac{\partial (u_ak^a)}{\partial \tau} \right]_{(r_e, \tau_e)} \delta \tau_e ,
\]

where for inhomogeneous pressure models

\[
u_ak^a = - \frac{1 + \frac{1}{4} k(\tau) r^2}{a(\tau)} .
\]

(58)

From the definition of the redshift drift by Sandage (1962):

\[
\delta z = \frac{(u_ak^a)(r_e, \tau_e + \delta \tau_e)}{(u_ak^a)(r_0, \tau_0 + \delta \tau_0)} - \frac{(u_ak^a)(r_e, \tau_e)}{(u_ak^a)(r_0, \tau_0)} ,
\]

(59)
We obtain
\[\frac{\delta z}{\delta \tau} = - \frac{H_0}{1 + \frac{1}{4} k(\tau_0) r_0^2} \left[\frac{H}{H_0} - (1 + z) \right], \tag{60} \]
which with the help of the definitions of the density parameters Ω_0 and Ω_{inh} can be rewritten as
\[\frac{\delta z}{\delta \tau} = - \frac{H_0}{1 + \frac{1}{4} H_0^2 (\Omega_0 - 1) \tilde{r}_0^2} \left[\sqrt{\Omega_0 \tilde{a}^{-3(w+1)} + (1 - \Omega_0) \tilde{a}^{-1}} - (1 + z) \right], \tag{61} \]
where $\tilde{a} = \frac{a}{a_0}$ and $\tilde{r} = r a_0$.
Eventually we end up with the following set of formulas that combined together allows us to find the rate of change of redshift \(\frac{\delta z}{\delta \tau} \) (a redshift drift) of any source at redshift \(z \) in the considered class of Stephani model defined by the relation

\[
k(\tau) = \beta a(\tau).
\]

\[
\frac{\delta z}{\delta \tau} = - \frac{H_0}{1 + \frac{1}{4} H_0^2 (\Omega_0 - 1) \tilde{r}_0^2} \left(\sqrt{\Omega_0 \tilde{a}^{-3} (w+1) + (1 - \Omega_0) \tilde{a}^{-1} - 1 - z} \right)
\]

\[
\tilde{a}^{-1} = \frac{1 + \frac{H_0^2}{4} (\Omega_0 - 1) \tilde{r}_0^2}{1 + \frac{H_0^2}{4} (\Omega_0 - 1) \tilde{a} \tilde{r}^2} (1 + z),
\]

\[
\frac{d\tilde{r}}{d\tau} = \pm \tilde{a}^{-1} \left(1 - \frac{\tilde{r}_0^2}{\tilde{r}^2} \sin^2 \phi \right)^{1/2}.
\]

where the last equation describes the propagation of the null geodesic.
For the computational convenience we transform the above formulas to

\[
\frac{\delta z}{\delta \tau} = -\frac{H_0}{1 + \frac{1}{4}H_0^2(\Omega_0 - 1)\tilde{r}_0^2} \left[\sqrt{\Omega_0 \tilde{a}^{-3(w+1)} + (1 - \Omega_0)\tilde{a}^{-1}} - (1 + (65)) \right]
\]

\[
\tilde{a}^{-1} = \left[1 + \frac{H_0^2}{4} (\Omega_0 - 1)\tilde{r}_0^2 \right] (1 + z) - \frac{H_0^2}{4} (\Omega_0 - 1)\tilde{r}^2, \tag{66}
\]

\[
\frac{d\tilde{r}}{dz} = \frac{1 + \frac{H_0^2}{4} (\Omega_0 - 1)\tilde{r}_0^2}{\sqrt{\Omega_0 \tilde{a}^{-3(w+1)} + (1-\Omega_0)\tilde{a}^{-1}}} + \frac{H_0^2}{2} (\Omega_0 - 1)\tilde{r}^2, \tag{67}
\]

\[
r(z = 0) = r_0. \tag{68}
\]
In the limit where $\Omega_0 = 1 \Rightarrow \Omega_{inh} = 0$ and $w = 0$, i.e. a flat FRW model filled with dust (CDM) the formula (62) reduces to

$$\frac{\delta z}{\delta \tau} = -H_0[(1 + z)^{3/2} - (1 + z)],$$

which coincides with the formulas obtained in earlier papers investigating the problem (Sandage 1962, Loeb 1998).

On the other hand, for pressure-inhomogeneity-dominated universe $\Omega_0 \rightarrow 0 \Rightarrow \Omega_{inh} \rightarrow 1$, and we have a simple result

$$\frac{\delta z}{\delta t} = H_0 \frac{z}{2},$$

which means that the drift grows linearly with redshift.
Quercellini et. al (2012) found the redshift drift for: ΛCDM, DGP model, Cold Dark Matter (CMD) model, 3 different void models (LTB).

- ΛCDM, DGP - the drift is **positive at small redshift**, but becomes negative for $z \gtrsim 2$

- Giant void (LTB) model mimicking dark energy - the drift is **always negative**.
The redshift drift for the spherically symmetric inhomogeneous pressure Stephani model with $r_0 = 0$, $w = 0$.

- Ω_{inh} (parameter of inhomogeneity) small - mimics LTB and CDM models
- Ω_{inh} larger - the drift alike in ΛCDM models (first positive, then negative), e.g. for $\Omega_{inh} = 0.61$ drift is positive for $z \in (0, 0.34)$.
- Ω_{inh} very large - drift positive ($\Omega_{inh} = 0.99$ up to $z = 17$; $\Omega_{inh} = 1$ (inhomogeneity-domination) $z > 0$).
Redshift drift - future observations.

LTB (void) inhomogeneity (due to the energy density) is different from the Stephani inhomogeneity (due to the pressure) which shows in the fact that the drift is always negative for an LTB model and always positive for an inhomogeneity-dominated Stephani model.

One is able to differentiate between the drift in ΛCDM models, in LTB models, and in Stephani models - this can be done in future experiments.

At larger $z > 1.7$ redshifts by giant telescopes: European Extremely Large Telescope (E-ELT) with spectrograph CODEX (COsmic Dynamics EXperiment); Thirty Meter Telescope (TMT); Giant Magellan Telescope (GMT).

At smaller (even $z \sim 0.2$) redshifts by gravitational wave interferometers DECIGO/BBO (DECi-hertz Interferometer Gravitational Wave Observatory/Big Bang Observer). This could clearly reject LTB models if the drift measured was positive!
6. Conclusions

- Observations from one point in the Universe suggest its isotropy, but not necessarily homogeneity. This gives motivation for studying spherically symmetric models of the Universe.

- Two specific models have been proposed: the Lemaître-Tolman-Bondi model (inhomogeneous density) and the Stephani model (inhomogeneous pressure).

- These models have been preliminary checked against astronomical data which shows that the inhomogeneities may drive acceleration – back-reaction of inhomogeneities.

- There is an open question whether we really live in a homogeneous and isotropic (FRW) universe or at least in an isotropic (spherically symmetric) void or an interior of an inhomogeneous pressure “exotic star”. Especially, it is interesting to check data for non-centrally placed observers.
Inhomogeneous pressure models have another advantage - they can even model a total spacetime inhomogeneity.

Another advantage is that they admit cosmic acceleration in a natural way and can serve as dark energy.

In the class of Stephani models considered (with a centrally placed observer) there is a subset of observationally viable models which show qualitatively different behavior of redshift drift than the LTB void models and ΛCDM models.

This difference may allow to test inhomogeneous pressure (Stephani) models against LTB void and ΛCDM models in future experiments aimed to measure the redshift drift - E-ELT, TMT, GMT, DECIGO/BBO.